Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2022_5_a3, author = {M. Rybakov}, title = {Computational complexity of the word problem in modal and {pseudo-Boolean} algebras}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {42--60}, publisher = {mathdoc}, number = {5}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2022_5_a3/} }
M. Rybakov. Computational complexity of the word problem in modal and pseudo-Boolean algebras. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2022), pp. 42-60. http://geodesic.mathdoc.fr/item/IVM_2022_5_a3/
[1] Thue A., “Problem über Veränderungen von Zeichenreihen nach gegebehen Regeln”, Vid. Skr. Math.-natur. KI., 10 (1914)
[2] Markov A. A., “Nevozmozhnost nekotorykh algorifmov v teorii assotsiativnykh sistem”, Dokl. AN SSSR, 55:7 (1947), 587–590
[3] Post EL., “Recursive unsolvability of a problem of Thue”, J. Symbolic Logic, 12:1 (1947), 1–11 | DOI | MR | Zbl
[4] Adyan S. I., Durnev V. G., “Algoritmicheskie problemy dlya grupp i polugrupp”, UMN, 55:2(332) (2000), 3–94 | MR | Zbl
[5] Ladner R. E., “The computational complexity of provability in systems of modal propositional logic”, SIAM J. on Comput., 6:3 (1977), 467–480 | DOI | MR | Zbl
[6] Statman R., “Intuitionistic propositional logic is polynomial-space complete”, Theoretical Comput. Sci., 9 (1979), 67–72 | DOI | MR | Zbl
[7] Levin L. A., “Universalnye zadachi perebora”, Probl. peredachi informatsii, 9:3 (1973), 115–116 | MR | Zbl
[8] Cook S. A., “The Complexity of Theorem-Proving Procedures”, Proceedings of the Third Annual ACM Symposium on the Theory of Computation, 1971, 151–158 | DOI | MR | Zbl
[9] Rybakov M. N., “Slozhnost problemy razresheniya bazisnoi i formalnoi logik”, Logicheskie issledov., 10, Nauka, M., 2003, 158–166 | Zbl
[10] Rybakov M. N., “Slozhnost konstantnogo fragmenta propozitsionalnoi dinamicheskoi logiki”, Vestn. Tversk. gos. un-ta. Ser. Prikl. matem., 2007, no. 5, 5–17
[11] Chagrov A., Rybakov M., How many variables does one need to prove PSPACE-hardness of modal logics?, Adv. in Modal Logic, 4 (2003), 71–82 | MR | Zbl
[12] Demri S., Schnoebelen P., “The complexity of propositional linear temporal logics in simple cases”, Information and Comput., 174 (2002), 84–103 | DOI | MR | Zbl
[13] Halpern J. Y., “The effect of bounding the number of primitive propositions and the depth of nesting on the complexity of modal logic”, Aftificial Intelligence, 75:2 (1995), 361–372 | DOI | MR | Zbl
[14] Rybakov M., “Complexity of finite-variable fragments of EXPTIME-complete logics”, J. Appl. Non-Classical Logics, 17:3 (2007), 359–382 | DOI | MR | Zbl
[15] Rybakov M., “Complexity of intuitionistic propositional logic and its fragments”, J. Appl. Non-Classical Logics, 18:2–3 (2008), 267–292 | DOI | MR | Zbl
[16] Rybakov M., Shkatov D., “Complexity and expressivity of branching- and alternating-time temporal logics with finitely many variables”, Theoretical Aspects of Computing, ICTAC 2018, Lect. Notes in Comput. Sci., 11187, eds. Fischer B., Uustalu T., Springer, 2018, 396–414 | DOI | MR | Zbl
[17] Rybakov M., Shkatov D., “Complexity and expressivity of propositional dynamic logics with finitely many variables”, Logic J. of the IGPL, 26:5 (2018), 539–547 | DOI | MR
[18] Rybakov M., Shkatov D., “Complexity of finite-variable fragments of propositional modal logics of symmetric frames”, Logic J. of the IGPL, 27:1 (2019), 60–68 | MR
[19] Rybakov M., Shkatov D., “Complexity of finite-variable fragments of products with K”, J. Logic and Comput., 31:2 (2021), 426–443 | DOI | MR | Zbl
[20] Rybakov M., “Complexity of intuitionistic and Visser's basic and formal logic in finitely many variables”, Adv. in Modal Logic, 6, King's College Publications, London, 2006, 393–411 | MR
[21] Spaan E., Complexity of Modal Logics, PhD thesis, Univ. van Amsterdam, 1993 | MR
[22] Švejdar V., “The decision problem of provability logic with only one atom”, Archive for Math. Logic, 42:8 (2003), 763–768 | DOI | MR
[23] Chagrov A., Zakharyaschev M., Modal Logic, Oxford Univ. Press, 1997 | MR | Zbl
[24] Papadimitriou C. H., Computational Complexity, Addison–Wesley Publishing Company, 1995 | MR
[25] Savitch W. J., “Relationships between nondeterministic and deterministic tape complexity”, J. Comput. and Syst. Sci., 4 (1970), 177–192 | DOI | MR | Zbl
[26] Nishimura I., “On formulas of one variable in intuitionistic propositional calculus”, J. Symbolic Logic, 25:4 (1960), 327–331 | DOI | MR | Zbl
[27] Yankov V. A., “Ob ischislenii slabogo zakona isklyuchennogo tretego”, Izv. AN SSSR. Ser. matem., 2:5 (1968), 1044–1051
[28] Mardaev S. I., “Vlozheniya implikativnykh reshetok v superintuitsionistskie logiki”, Algebra i logika, 26:3 (1987), 318–357 | MR
[29] Rybakov M., Shkatov D., “Undecidability of first-order modal and intuitionistic logics with two variables and one monadic predicate letter”, Studia Logica, 107:4 (2019), 695–717 | DOI | MR | Zbl
[30] Rybakov M., Shkatov D., “Algorithmic properties of first-order modal logics of finite Kripke frames in restricted languages”, J. Logic and Comput., 30:7 (2020), 1305–1329 | DOI | MR | Zbl
[31] Rybakov M., Shkatov D., “Algorithmic properties of first-order superintuitionistic logics of finite Kripke frames in restricted languages”, J. Logic and Comput., 31:2 (2021), 494–522 | DOI | MR | Zbl