Skew minimal surfaces supported by two triangular frames
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2022), pp. 3-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

We use the Chaplygin hodograph transformation to explicitly solve the problem of finding skew minimal surfaces supported by two triangular equilateral frames. The skew arises due to the special position of the frames: they are not coaxial but have central symmetry about a certain point, and mirror symmetry about one of the three planes formed by pairs of parallel bisectors of the upper and lower frames. In the particular case of coaxial frames, we compare our solution with the solution of the problem obtained by the Weierstrass–Enneper method.
Keywords: minimal surface
Mots-clés : hodograph transformation, complex variable.
@article{IVM_2022_5_a0,
     author = {M. M. Alimov},
     title = {Skew minimal surfaces supported by two triangular frames},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--25},
     publisher = {mathdoc},
     number = {5},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_5_a0/}
}
TY  - JOUR
AU  - M. M. Alimov
TI  - Skew minimal surfaces supported by two triangular frames
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 3
EP  - 25
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_5_a0/
LA  - ru
ID  - IVM_2022_5_a0
ER  - 
%0 Journal Article
%A M. M. Alimov
%T Skew minimal surfaces supported by two triangular frames
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 3-25
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_5_a0/
%G ru
%F IVM_2022_5_a0
M. M. Alimov. Skew minimal surfaces supported by two triangular frames. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2022), pp. 3-25. http://geodesic.mathdoc.fr/item/IVM_2022_5_a0/

[1] Plateau J., Statique experimentale et theorique des liquides soumis aux seules forees moleculaires, Gauthier-Villars, Paris, 1873

[2] Kurant R., Printsip Dirikhle, konformnye otobrazheniya i minimalnye poverkhnosti, Izd-vo in. lit., M., 1953

[3] Dao Chong Tkhi, Fomenko A. T., Minimalnye poverkhnosti i problema Plato, Nauka, M., 1987 | MR

[4] Al-Ketan O., Abu Al-Rub R. K., “Multifunctional mechanical metamaterials based on triply periodic minimal surface lattices”, Adv. Engineering Materials, 21:10 (2019) | DOI

[5] Nitsche J. C.C., Lectures on minimal surfaces, v. 1, Reissue edition, Cambridge Univ. Press, New York, 2011 | MR | Zbl

[6] Arfken G. B., Weber H. J., Harris F. E., Mathematical Methods for Physicists, Elsevier Academic Press, Amsterdam, 2012 | MR

[7] Lidin S., “Ring-like minimal surfaces”, J. Phys. France, 49:3 (1988), 421–427 | DOI | MR

[8] Alimov M., Bazilevsky A., Kornev K., “Minimal surfaces on mirror-symmetric frames: a fluid dynamics analogy”, J. Fluid Mech., 897 (2020), A36 | DOI | MR | Zbl

[9] Chaplygin S. A., O gazovykh struyakh, Gostekhizdat, M.-L., 1949 | MR

[10] Alimov M. M., Bazilevsky A. V., Kornev K. G., “Soap film on two noncircular frames”, Phys. Fluids, 33 (2021), 052104 | DOI

[11] Ferreol R., , 2017 https://mathcurve.com/surfaces.gb/catenoid/catenoidgauche.shtml

[12] Alimov M. M., Kornev K. G., “Analysis of the shape hysteresis of a soap film supported by two circular rings”, Fluid Dynamics, 54:1 (2019), 42–55 | DOI | MR | Zbl

[13] Novikov S. P., Fomenko A. T., Elementy differentsialnoi geometrii i topologii, Nauka, M., 1987 | MR

[14] Fridman A., Variatsionnye printsipy i zadachi so svobodnymi granitsami, Nauka, M., 1990

[15] Khristianovich S. A., “Dvizhenie podzemnykh vod, ne sleduyuschee zakonu Darsi”, PMM, 4:1 (1940), 33–52

[16] Bernadiner M. G., Entov V. M., Gidrodinamicheskaya teoriya filtratsii anomalnykh zhidkostei, Nauka, M., 1975

[17] Alimov M. M., Kornev K. G., “Meniscus on a shaped fibre: singularities and hodograph formulation”, Proc. R. Soc. A, 470 (2014), 20140113 | DOI | MR | Zbl

[18] Alimov M. M., Kornev K. G., “Vneshnii menisk na tonkom volokne s profilem, imeyuschim otdelnye tochki spryamleniya”, Izv. vuzov. Matem., 2020, no. 1, 3–10 | MR | Zbl

[19] Sokolovskii V. V., “O nelineinoi filtratsii gruntovykh vod”, PMM, 13:5 (1949), 525–536

[20] Lamb G., Gidrodinamika, OGIZ, M.-L., 1947

[21] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973 | MR

[22] Birkgof G., Sarantonello E., Strui, sledy i kaverny, Mir, M., 1964 | MR

[23] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza, GTT, M.-L., 1934

[24] Abramovits M., Stigan I., Spravochnik po spetsialnym funktsiyam, S formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979

[25] Smirnov V. I., Kurs vysshei matematiki, Nauka, M., 1974 | MR

[26] Schwarz N. A., Gesammelte Mathematische Abhandlungen, Springer, Berlin, 1890 | Zbl