Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2022_5_a0, author = {M. M. Alimov}, title = {Skew minimal surfaces supported by two triangular frames}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--25}, publisher = {mathdoc}, number = {5}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2022_5_a0/} }
M. M. Alimov. Skew minimal surfaces supported by two triangular frames. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2022), pp. 3-25. http://geodesic.mathdoc.fr/item/IVM_2022_5_a0/
[1] Plateau J., Statique experimentale et theorique des liquides soumis aux seules forees moleculaires, Gauthier-Villars, Paris, 1873
[2] Kurant R., Printsip Dirikhle, konformnye otobrazheniya i minimalnye poverkhnosti, Izd-vo in. lit., M., 1953
[3] Dao Chong Tkhi, Fomenko A. T., Minimalnye poverkhnosti i problema Plato, Nauka, M., 1987 | MR
[4] Al-Ketan O., Abu Al-Rub R. K., “Multifunctional mechanical metamaterials based on triply periodic minimal surface lattices”, Adv. Engineering Materials, 21:10 (2019) | DOI
[5] Nitsche J. C.C., Lectures on minimal surfaces, v. 1, Reissue edition, Cambridge Univ. Press, New York, 2011 | MR | Zbl
[6] Arfken G. B., Weber H. J., Harris F. E., Mathematical Methods for Physicists, Elsevier Academic Press, Amsterdam, 2012 | MR
[7] Lidin S., “Ring-like minimal surfaces”, J. Phys. France, 49:3 (1988), 421–427 | DOI | MR
[8] Alimov M., Bazilevsky A., Kornev K., “Minimal surfaces on mirror-symmetric frames: a fluid dynamics analogy”, J. Fluid Mech., 897 (2020), A36 | DOI | MR | Zbl
[9] Chaplygin S. A., O gazovykh struyakh, Gostekhizdat, M.-L., 1949 | MR
[10] Alimov M. M., Bazilevsky A. V., Kornev K. G., “Soap film on two noncircular frames”, Phys. Fluids, 33 (2021), 052104 | DOI
[11] Ferreol R., , 2017 https://mathcurve.com/surfaces.gb/catenoid/catenoidgauche.shtml
[12] Alimov M. M., Kornev K. G., “Analysis of the shape hysteresis of a soap film supported by two circular rings”, Fluid Dynamics, 54:1 (2019), 42–55 | DOI | MR | Zbl
[13] Novikov S. P., Fomenko A. T., Elementy differentsialnoi geometrii i topologii, Nauka, M., 1987 | MR
[14] Fridman A., Variatsionnye printsipy i zadachi so svobodnymi granitsami, Nauka, M., 1990
[15] Khristianovich S. A., “Dvizhenie podzemnykh vod, ne sleduyuschee zakonu Darsi”, PMM, 4:1 (1940), 33–52
[16] Bernadiner M. G., Entov V. M., Gidrodinamicheskaya teoriya filtratsii anomalnykh zhidkostei, Nauka, M., 1975
[17] Alimov M. M., Kornev K. G., “Meniscus on a shaped fibre: singularities and hodograph formulation”, Proc. R. Soc. A, 470 (2014), 20140113 | DOI | MR | Zbl
[18] Alimov M. M., Kornev K. G., “Vneshnii menisk na tonkom volokne s profilem, imeyuschim otdelnye tochki spryamleniya”, Izv. vuzov. Matem., 2020, no. 1, 3–10 | MR | Zbl
[19] Sokolovskii V. V., “O nelineinoi filtratsii gruntovykh vod”, PMM, 13:5 (1949), 525–536
[20] Lamb G., Gidrodinamika, OGIZ, M.-L., 1947
[21] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973 | MR
[22] Birkgof G., Sarantonello E., Strui, sledy i kaverny, Mir, M., 1964 | MR
[23] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza, GTT, M.-L., 1934
[24] Abramovits M., Stigan I., Spravochnik po spetsialnym funktsiyam, S formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979
[25] Smirnov V. I., Kurs vysshei matematiki, Nauka, M., 1974 | MR
[26] Schwarz N. A., Gesammelte Mathematische Abhandlungen, Springer, Berlin, 1890 | Zbl