Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2022_3_a9, author = {V. N. Paimushin}, title = {Mechanical plane problems of the straight beams with deformable protect fixed section of a finite length}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {89--96}, publisher = {mathdoc}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2022_3_a9/} }
TY - JOUR AU - V. N. Paimushin TI - Mechanical plane problems of the straight beams with deformable protect fixed section of a finite length JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2022 SP - 89 EP - 96 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2022_3_a9/ LA - ru ID - IVM_2022_3_a9 ER -
%0 Journal Article %A V. N. Paimushin %T Mechanical plane problems of the straight beams with deformable protect fixed section of a finite length %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2022 %P 89-96 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2022_3_a9/ %G ru %F IVM_2022_3_a9
V. N. Paimushin. Mechanical plane problems of the straight beams with deformable protect fixed section of a finite length. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2022), pp. 89-96. http://geodesic.mathdoc.fr/item/IVM_2022_3_a9/
[1] Ambartsumyan S. A., Obschaya teoriya anizotropnykh obolochek, Nauka, M., 1974
[2] Ambartsumyan S. A., Teoriya anizotropnykh plastin. Prochnost, ustoichivost i kolebaniya, Nauka, M., 1987 | MR
[3] Reddy J. N., “A simple higher-order theory for laminated composite plates”, Appl. Mech., 51 (1984), 745–752 | DOI | Zbl
[4] Librescu L., “Refined geometrically non-linear theories of anisotropic laminated shells”, Quart. Appl. Math., 45 (1987), 1–22 | DOI | MR | Zbl
[5] Schmidt R., Reddy J. N., “A refined small strain and moderate rotation theory of elastic anisotropic shells”, J. Appl. Mech., 55 (1988), 611–617 | DOI | Zbl
[6] Librescu L., Schmidt R., “Refined theories of elastic anisotropic shells accounting for small strains and moderate rotations”, Int. J. Nonlinear Mech., 23 (1988), 217–229 | DOI | Zbl
[7] Reddy J. N., “A general non-linear third-order theory of plates with moderate thickness”, Int. J. Nonlinear Mech., 25 (1990), 677–686 | DOI | Zbl
[8] Librescu L., Schmidt R., “Substantiation of a shear-deformable theory of anisotropic composite laminated shells accounting for the interlaminate continuity conditions”, Int. J. Eng. Sci., 29 (1991), 669–683 | DOI | MR | Zbl
[9] Başar Y., Ding Y., Schultz R., “Refined shear-deformation models for composite laminates with finite rotations”, Int. J. Solids Struct., 30 (1993), 2611–2638 | DOI | Zbl
[10] Gruttmann F., Wagner W., “A linear quadrilateral shell element with fast stiffness computation”, Comp. Meth. Appl. Mech. Eng., 194 (2005), 4279–4300 | DOI | Zbl
[11] Gruttmann F., Wagner W., “Structural analysis of composite laminates using a mixed hybrid shell element”, Comput. Mech., 37 (2006), 479–497 | DOI | Zbl
[12] Schmidt R., Vu. T.D., “Nonlinear dynamic FE simulation of smart piezolaminated structures based on first- and third-order transverse shear deformation theory”, Adv. Materials Research, 79–82 (2009), 1313–1316 | DOI
[13] Yankovskii A. P., “Critical Analysis of the Equations of Statics in the Bending Theories of Composite Plates Obtained on the Basis of Variational Principles of Elasticity Theory $1$. General Theories of High Order”, Mech. of Composite Materials, 56:3 (2020), 271–290 | DOI
[14] Yankovskii A. P., “Critical Analysis of the Equations of Statics in the Bending Theories of Composite Plates Obtained on the Basis of Variational Principles of Elasticity Theory $2$. Particular Low-Order Theories”, Mech. of Composite Materials, 56:4 (2020), 437–454 | DOI
[15] Reissner E., “On the theory of bending of elastic plates”, J. Math. and Phys., 23:4 (1944), 184–191 | DOI | MR | Zbl
[16] Mindlin R. D., “Thickness-shear and flexural vibrations of crystal plates”, J. Appl. Phys., 23:3 (1951), 316–323 | DOI | MR
[17] Reissner E., “A consistent treatment of transverse shear deformations in laminated anisotropic plates”, AIAA J., 10:5 (1972), 716–718 | DOI
[18] Malmeister A. K., Tamuzh V. P., Teters G. A., Soprotivlenie polimernykh i kompozitnykh materialov, Zinatne, Riga, 1980
[19] Reddy J. N., “A refined nonlinear theory of plates with transverse shear deformation”, Int. J. of Solids and Structures, 250:9 (1984), 881–896 | DOI
[20] Nemirovskii Yu. V., Reznikov B. S., Prochnost elementov konstruktsii iz kompozitnykh materialov, Nauka, Novosibirsk, 1986
[21] Andreev A. N., Uprugost i termouprugost sloistykh kompozitnykh obolochek. Matematicheskaya model i nekotorye aspekty chislennogo analiza, Palmarium Academic Publishing, Saarbrucken (Deutschland), 2013
[22] Thai C. H., “Analysis of laminated composite plates using higher-order shear deformation plate theory and mode-based smoother discrete shear gap method”, Appl. Math. Modeling, 36:11 (2012), 5657–5677 | DOI | MR | Zbl
[23] Mau S., “A refined laminated plates theory”, J. Appl. Mech., 40:2 (1973), 606–607 | DOI
[24] Christensen R., Lo K., Wu E., “A high-order theory of plate deformation. Part 1: homogeneous plates”, J. Appl. Mech., 44:7 (1977), 663–668 | Zbl
[25] Andreev A. N., Nemirovskii Yu. V., Mnogosloinye anizotropnye obolochki i plastiny. Izgib, ustoichivost i kolebaniya, Nauka, Novosibirsk, 2001