Conjugate rational Foutier--Chebyshev operator and its approximation properties
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2022), pp. 44-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a conjugate rational integral Fourier–Chebyshev operator associated with the system of Chebyshev–Markov algebraic fractions is constructed. Pointwise estimates of approximations on the segment $[-1,~1]$ of the conjugate function with density $(1-x)^{\gamma}, \gamma>1/2,$ and uniform estimates of approximations expressed in terms of a certain majorant are obtained. Asymptotic expression for majorants of approximations and optimal values of parameters that provide the highest speed decreasing majorants are found. At the corollary the corresponding estimates of approximations on the segment $[-1,~1]$ of the conjugate function under study by partial sums of conjugate polynomial Fourier–Chebyshev series are given.
Keywords: conjugate function, integral operator, rational approximation, pointwise estimate, asymptotic estimate, best approximation.
@article{IVM_2022_3_a5,
     author = {P. G. Potseiko and Ye. A. Rovba},
     title = {Conjugate rational {Foutier--Chebyshev} operator and its approximation properties},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {44--60},
     publisher = {mathdoc},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_3_a5/}
}
TY  - JOUR
AU  - P. G. Potseiko
AU  - Ye. A. Rovba
TI  - Conjugate rational Foutier--Chebyshev operator and its approximation properties
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 44
EP  - 60
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_3_a5/
LA  - ru
ID  - IVM_2022_3_a5
ER  - 
%0 Journal Article
%A P. G. Potseiko
%A Ye. A. Rovba
%T Conjugate rational Foutier--Chebyshev operator and its approximation properties
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 44-60
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_3_a5/
%G ru
%F IVM_2022_3_a5
P. G. Potseiko; Ye. A. Rovba. Conjugate rational Foutier--Chebyshev operator and its approximation properties. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2022), pp. 44-60. http://geodesic.mathdoc.fr/item/IVM_2022_3_a5/

[1] Pykhteev G. N., “O vychislenii nekotorykh singulyarnykh integralov s yadrom tipa Koshi”, Prikl. matem. i mekhan., 23 (1959), 1074–1082 | MR | Zbl

[2] Gakhov F. D., Kraevye zadachi, Gos. izd-vo fiz.-matem. lit-ry, M., 1958

[3] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, 3-e mzd., Nauka, M., 1968 | MR

[4] Butzer P.L, Stens R. L., “The operational properties of Chebyshev transform. II. Fractional Derivatives”, Proc. Internat. Conf. on the Theory of Approximation of Functions (Kaluga, 1975), M., 1977, 49–61 | MR | Zbl

[5] Motornyi V. P., “Priblizhenie nekotorykh klassov singulyarnykh integralov algebraicheskimi mnogochlenami”, Ukr. matem. zhurn., 53:3 (2001), 331–345 | MR | Zbl

[6] Motornyi V. P., “Priblizhenie odnogo klassa singulyarnykh integralov algebraicheskimi mnogochlenami s uchetom polozheniya tochki na otrezke”, Tr. MIAN, 232, 2001, 268–285 | Zbl

[7] Misyuk V. R., Pekarskii A. A., “Sopryazhennye funktsii na otrezke i sootnosheniya dlya ikh nailuchshikh ravnomernykh polinomialnykh priblizhenii”, Vestsi NAN Belarusi. Ser. Fiz.-matem. navuk, 2 (2015), 37–40

[8] Priwaloff I., “Sur les fonctions conjuguées”, Bull. de la Soc. Math. de France, 44 (1916), 100–103 | DOI | MR | Zbl

[9] Privalov I. I., “K teorii sopryazhennykh trigonometricheskikh ryadov”, Matem. sb., 31:2 (1923), 224–228 | Zbl

[10] Kolmogorov A. N., “Sur les fonctions harmoniques conjuguées et les séries de Fourier”, Fund. Math., 7 (1925), 24–29 | DOI | Zbl

[11] Riesz M., “Les fonctions conjuguées et les séries de Fourier”, Compt. rend. de l'Acad. des Sci., 178 (1924), 1464–1467 | Zbl

[12] Riesz M., “Sur les fonctions conjuguées”, Math. Zeit., 27 (1927), 218–244 | DOI | MR | Zbl

[13] Bari N. K., “O nailuchshem priblizhenii trigonometricheskimi polinomami dvukh sopryazhennykh funktsii”, Izv. AN SSSR. Ser. matem., 19:5 (1955), 285–302 | Zbl

[14] Stechkin S. B., “O nailuchshem priblizhenii sopryazhennykh funktsii trigonometricheskimi polinomami”, Izv. AN SSSR. Ser. matem., 20:2 (1956), 197–206 | MR | Zbl

[15] Rusak V. N., Rybachenko I. V., “Ravnomernaya ratsionalnaya approksimatsiya sopryazhennykh funktsii”, Vestn. BGU. Ser. 1. Fiz., matem. i informatika, 3 (2013), 83–86 | Zbl

[16] Mardvilko T. S., Pekarskii A. A., “Conjugate Functions on the Closed Interval and Their Relationship with Uniform Rational and Piecewise Polynomial Approximations”, Math. Notes, 99:3 (2016), 272–283 | DOI | MR | Zbl

[17] Rusak V. N., “Ob odnom metode priblizheniya ratsionalnymi funktsiyami”, Vestsi AN BSSR. Ser. fiz.-matem. navuk., 3 (1978), 15–20

[18] Rovba E. A., “Ratsionalnye integralnye operatory na otrezke”, Vestn. BGU. Ser. 1. Matem. i informatika, 1:1 (1996), 34–39 | MR | Zbl

[19] Rovba E. A., “Ob odnom pryamom metode v ratsionalnoi approksimatsii”, DAN BSSR, 23:11 (1979), 968–971 | MR | Zbl

[20] Dzhrbashyan M. M., “K teorii ryadov Fure po ratsionalnym funktsiyam”, Izv. AN ArmSSR. Ser. fiz.-matem., 9:7 (1956), 3–28

[21] Smotritskii K. A., “O priblizhenii differentsiruemykh v smysle Rimana–Liuvillya funktsii”, Izv. NAN Belarusi. Ser. fiz.-matem. nauk, 4 (2002), 42–47 | MR | Zbl

[22] Potseiko P. G., Rovba Y. A., Smotritskii K. A., “On one rational integral operator of Fourier–Chebyshev type and approximation of Markov functions”, Zhurn. Belorussk. gos. un-ta. Matem. Informatika, 2 (2020), 6–27 | MR

[23] Potseiko P. G., Rovba E. A., “Priblizheniya na klassakh integralov Puassona ratsionalnymi integralnymi operatorami Fure–Chebysheva”, Sib. matem. zhurn., 62:2 (2021), 362–386 | Zbl

[24] Rovba E. A., Potseiko P. G., “Priblizheniya sopryazhennykh funktsii chastichnymi summami sopryazhennykh ryadov Fure po odnoi sisteme algebraicheskikh drobei Chebysheva–Markova”, Izv. vuzov. Matem., 2020, no. 9, 68–84 | Zbl

[25] Rusak V. N., Ratsionalnye funktsii kak apparat priblizheniya, Izd.-vo BGU, Minsk, 1979

[26] Bari N. K., Trigonometricheskie ryady, Fizmatlit, M., 1961

[27] Lungu K. N., “O nailuchshikh priblizheniyakh ratsionalnymi funktsiyami s fiksirovannym chislom polyusov”, Matem. sb., 86(128):2(10) (1971), 314–324 | Zbl

[28] Lungu K. N., “O nailuchshikh priblizheniyakh ratsionalnymi funktsiyami s fiksirovannym chislom polyusov”, Sib. matem. zhurn., 25:2 (1984), 151–160 | MR | Zbl

[29] Evgrafov M. A., Asimptoticheskie otsenki i tselye funktsii, Nauka, M., 1979 | MR

[30] Fedoryuk M. V., Asimptotika. Integraly i ryady, Gl. red. Fiz.-matem. lit-ry, M., 1987 | MR

[31] Rovba E. A., Mikulich E. G., “Constants in rational approximation of Markov–Stieltjes functions with fixed number of poles”, Vesnik GrDu imya Yanki Kupaly. Ser. 2. Matem. Fiz. Infarm., vylichaln. tekhn. i kiravanne, 1:148 (2013), 12–20

[32] Bernshtein S. N., Ekstremalnye svoistva polinomov i nailuchshee priblizhenie nepreryvnykh funktsii odnoi veschestvennoi peremennoi. Ch. 1, Gl. red. obschetekhn. lit-ry, M.–L., 1937