Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2022_3_a5, author = {P. G. Potseiko and Ye. A. Rovba}, title = {Conjugate rational {Foutier--Chebyshev} operator and its approximation properties}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {44--60}, publisher = {mathdoc}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2022_3_a5/} }
TY - JOUR AU - P. G. Potseiko AU - Ye. A. Rovba TI - Conjugate rational Foutier--Chebyshev operator and its approximation properties JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2022 SP - 44 EP - 60 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2022_3_a5/ LA - ru ID - IVM_2022_3_a5 ER -
P. G. Potseiko; Ye. A. Rovba. Conjugate rational Foutier--Chebyshev operator and its approximation properties. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2022), pp. 44-60. http://geodesic.mathdoc.fr/item/IVM_2022_3_a5/
[1] Pykhteev G. N., “O vychislenii nekotorykh singulyarnykh integralov s yadrom tipa Koshi”, Prikl. matem. i mekhan., 23 (1959), 1074–1082 | MR | Zbl
[2] Gakhov F. D., Kraevye zadachi, Gos. izd-vo fiz.-matem. lit-ry, M., 1958
[3] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, 3-e mzd., Nauka, M., 1968 | MR
[4] Butzer P.L, Stens R. L., “The operational properties of Chebyshev transform. II. Fractional Derivatives”, Proc. Internat. Conf. on the Theory of Approximation of Functions (Kaluga, 1975), M., 1977, 49–61 | MR | Zbl
[5] Motornyi V. P., “Priblizhenie nekotorykh klassov singulyarnykh integralov algebraicheskimi mnogochlenami”, Ukr. matem. zhurn., 53:3 (2001), 331–345 | MR | Zbl
[6] Motornyi V. P., “Priblizhenie odnogo klassa singulyarnykh integralov algebraicheskimi mnogochlenami s uchetom polozheniya tochki na otrezke”, Tr. MIAN, 232, 2001, 268–285 | Zbl
[7] Misyuk V. R., Pekarskii A. A., “Sopryazhennye funktsii na otrezke i sootnosheniya dlya ikh nailuchshikh ravnomernykh polinomialnykh priblizhenii”, Vestsi NAN Belarusi. Ser. Fiz.-matem. navuk, 2 (2015), 37–40
[8] Priwaloff I., “Sur les fonctions conjuguées”, Bull. de la Soc. Math. de France, 44 (1916), 100–103 | DOI | MR | Zbl
[9] Privalov I. I., “K teorii sopryazhennykh trigonometricheskikh ryadov”, Matem. sb., 31:2 (1923), 224–228 | Zbl
[10] Kolmogorov A. N., “Sur les fonctions harmoniques conjuguées et les séries de Fourier”, Fund. Math., 7 (1925), 24–29 | DOI | Zbl
[11] Riesz M., “Les fonctions conjuguées et les séries de Fourier”, Compt. rend. de l'Acad. des Sci., 178 (1924), 1464–1467 | Zbl
[12] Riesz M., “Sur les fonctions conjuguées”, Math. Zeit., 27 (1927), 218–244 | DOI | MR | Zbl
[13] Bari N. K., “O nailuchshem priblizhenii trigonometricheskimi polinomami dvukh sopryazhennykh funktsii”, Izv. AN SSSR. Ser. matem., 19:5 (1955), 285–302 | Zbl
[14] Stechkin S. B., “O nailuchshem priblizhenii sopryazhennykh funktsii trigonometricheskimi polinomami”, Izv. AN SSSR. Ser. matem., 20:2 (1956), 197–206 | MR | Zbl
[15] Rusak V. N., Rybachenko I. V., “Ravnomernaya ratsionalnaya approksimatsiya sopryazhennykh funktsii”, Vestn. BGU. Ser. 1. Fiz., matem. i informatika, 3 (2013), 83–86 | Zbl
[16] Mardvilko T. S., Pekarskii A. A., “Conjugate Functions on the Closed Interval and Their Relationship with Uniform Rational and Piecewise Polynomial Approximations”, Math. Notes, 99:3 (2016), 272–283 | DOI | MR | Zbl
[17] Rusak V. N., “Ob odnom metode priblizheniya ratsionalnymi funktsiyami”, Vestsi AN BSSR. Ser. fiz.-matem. navuk., 3 (1978), 15–20
[18] Rovba E. A., “Ratsionalnye integralnye operatory na otrezke”, Vestn. BGU. Ser. 1. Matem. i informatika, 1:1 (1996), 34–39 | MR | Zbl
[19] Rovba E. A., “Ob odnom pryamom metode v ratsionalnoi approksimatsii”, DAN BSSR, 23:11 (1979), 968–971 | MR | Zbl
[20] Dzhrbashyan M. M., “K teorii ryadov Fure po ratsionalnym funktsiyam”, Izv. AN ArmSSR. Ser. fiz.-matem., 9:7 (1956), 3–28
[21] Smotritskii K. A., “O priblizhenii differentsiruemykh v smysle Rimana–Liuvillya funktsii”, Izv. NAN Belarusi. Ser. fiz.-matem. nauk, 4 (2002), 42–47 | MR | Zbl
[22] Potseiko P. G., Rovba Y. A., Smotritskii K. A., “On one rational integral operator of Fourier–Chebyshev type and approximation of Markov functions”, Zhurn. Belorussk. gos. un-ta. Matem. Informatika, 2 (2020), 6–27 | MR
[23] Potseiko P. G., Rovba E. A., “Priblizheniya na klassakh integralov Puassona ratsionalnymi integralnymi operatorami Fure–Chebysheva”, Sib. matem. zhurn., 62:2 (2021), 362–386 | Zbl
[24] Rovba E. A., Potseiko P. G., “Priblizheniya sopryazhennykh funktsii chastichnymi summami sopryazhennykh ryadov Fure po odnoi sisteme algebraicheskikh drobei Chebysheva–Markova”, Izv. vuzov. Matem., 2020, no. 9, 68–84 | Zbl
[25] Rusak V. N., Ratsionalnye funktsii kak apparat priblizheniya, Izd.-vo BGU, Minsk, 1979
[26] Bari N. K., Trigonometricheskie ryady, Fizmatlit, M., 1961
[27] Lungu K. N., “O nailuchshikh priblizheniyakh ratsionalnymi funktsiyami s fiksirovannym chislom polyusov”, Matem. sb., 86(128):2(10) (1971), 314–324 | Zbl
[28] Lungu K. N., “O nailuchshikh priblizheniyakh ratsionalnymi funktsiyami s fiksirovannym chislom polyusov”, Sib. matem. zhurn., 25:2 (1984), 151–160 | MR | Zbl
[29] Evgrafov M. A., Asimptoticheskie otsenki i tselye funktsii, Nauka, M., 1979 | MR
[30] Fedoryuk M. V., Asimptotika. Integraly i ryady, Gl. red. Fiz.-matem. lit-ry, M., 1987 | MR
[31] Rovba E. A., Mikulich E. G., “Constants in rational approximation of Markov–Stieltjes functions with fixed number of poles”, Vesnik GrDu imya Yanki Kupaly. Ser. 2. Matem. Fiz. Infarm., vylichaln. tekhn. i kiravanne, 1:148 (2013), 12–20
[32] Bernshtein S. N., Ekstremalnye svoistva polinomov i nailuchshee priblizhenie nepreryvnykh funktsii odnoi veschestvennoi peremennoi. Ch. 1, Gl. red. obschetekhn. lit-ry, M.–L., 1937