On the achievable level of accuracy in solving abstract ill-posed problems and nonlinear operator equations in Banach space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2022), pp. 21-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that for a wide class of ill-posed problems of finding the value of a discontinuous operator on an approximate element in Banach space, the level of accuracy of the resulting solution cannot exceed in order the error level of the input data. A similar result is established for a class of nonlinear operator equations with an approximate right-hand side. The classes of problems for which these orders coincide are specified.
Keywords: ill-posed problem, operator equation, error, accuracy estimate, Banach space.
@article{IVM_2022_3_a2,
     author = {M. Yu. Kokurin and A. B. Bakushinsky},
     title = {On the achievable level of accuracy in solving abstract ill-posed problems and nonlinear operator equations in {Banach} space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {21--27},
     publisher = {mathdoc},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_3_a2/}
}
TY  - JOUR
AU  - M. Yu. Kokurin
AU  - A. B. Bakushinsky
TI  - On the achievable level of accuracy in solving abstract ill-posed problems and nonlinear operator equations in Banach space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 21
EP  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_3_a2/
LA  - ru
ID  - IVM_2022_3_a2
ER  - 
%0 Journal Article
%A M. Yu. Kokurin
%A A. B. Bakushinsky
%T On the achievable level of accuracy in solving abstract ill-posed problems and nonlinear operator equations in Banach space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 21-27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_3_a2/
%G ru
%F IVM_2022_3_a2
M. Yu. Kokurin; A. B. Bakushinsky. On the achievable level of accuracy in solving abstract ill-posed problems and nonlinear operator equations in Banach space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2022), pp. 21-27. http://geodesic.mathdoc.fr/item/IVM_2022_3_a2/

[1] Bakushinskii A. B., Goncharskii A. V., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989 | MR

[2] Bakushinskii A. B., Kokurin M. Yu., Algoritmicheskii analiz neregulyarnykh operatornykh uravnenii, LENAND, M., 2012

[3] Kaltenbacher B., Neubauer A., Scherzer O., Iterative Regularization Methods for Nonlinear Ill–Posed Problems, Walter de Gruyter, Berlin, 2008 | MR

[4] Ageev A. L., Antonova T. V., “O nekorrektno postavlennykh zadachakh lokalizatsii osobennostei”, Tr. IMM UrO RAN, 17, no. 3, 2011, 30–45

[5] Ageev A. L., Antonova T. V., “Issledovanie metodov lokalizatsii $q$–skachkov i razryvov pervogo roda zashumlennoi funktsii”, Izv. vuzov. Matem., 2019, no. 7, 3–14 | Zbl

[6] Leonov A. S., “O vozmozhnosti polucheniya lineinykh otsenok tochnosti priblizhennykh reshenii obratnykh zadach”, Izv. vuzov. Matem., 2016, no. 10, 29–35 | Zbl

[7] Trenogin V. A., Funktsionalnyi analiz, Nauka, M., 1980 | MR