On Visser's inequality concerning coefficient estimates for a polynomial
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2022), pp. 13-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

If $P(z)=\sum\limits_{j=0}^{n}a_jz^j$ is a polynomial of degree $n$ having no zero in $|z|1,$ then it was recently proved that for every $p\in[0,+\infty]$ and $s=0,1,\ldots,n-1,$ \begin{align*} \left\|a_nz+\frac{a_s}{\binom{n}{s}}\right\|_{p}\leq \frac{\left\|z+\delta_{0s}\right\|_p}{\left\|1+z\right\|_p}\left\|P\right\|_{p}, \end{align*} where $\delta_{0s}$ is the Kronecker delta. In this paper, we consider the class of polynomials having no zero in $|z|\rho,$ $\rho\geq 1$ and obtain some generalizations of above inequality.
Mots-clés : polynomial
Keywords: Visser's inequality, inequality in the complex domain.
@article{IVM_2022_3_a1,
     author = {S. Gulzar and N. A. Rather and M. Sh. Wani},
     title = {On {Visser's} inequality concerning coefficient estimates for a polynomial},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {13--20},
     publisher = {mathdoc},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_3_a1/}
}
TY  - JOUR
AU  - S. Gulzar
AU  - N. A. Rather
AU  - M. Sh. Wani
TI  - On Visser's inequality concerning coefficient estimates for a polynomial
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 13
EP  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_3_a1/
LA  - ru
ID  - IVM_2022_3_a1
ER  - 
%0 Journal Article
%A S. Gulzar
%A N. A. Rather
%A M. Sh. Wani
%T On Visser's inequality concerning coefficient estimates for a polynomial
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 13-20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_3_a1/
%G ru
%F IVM_2022_3_a1
S. Gulzar; N. A. Rather; M. Sh. Wani. On Visser's inequality concerning coefficient estimates for a polynomial. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2022), pp. 13-20. http://geodesic.mathdoc.fr/item/IVM_2022_3_a1/

[1] Visser C., “A simple proof of certain inequalities concerning polynomials”, Nederl. Akad. Wetensch. Proc., 47 (1945), 276–281 | MR

[2] Rahman Q. I., Schmeisser G., Analytic Theory of Polynomials, Oxford Univ. Press, New York, 2002 | MR | Zbl

[3] Gulzar S., “On estimates for the coefficients of a polynomial”, C. R. Acad. Sci. Paris, Ser. I, 354 (2016), 357–363 | DOI | MR | Zbl

[4] Gulzar S., Rather N. A., “$L_p$ inequalities for the Schur–Szegö composition of polynomials”, Acta Math. Hungar., 151 (2017), 124–138 | DOI | MR | Zbl

[5] Gulzar S., “Some Zygmund type inequalities for the $s$-th derivative of polynomials”, Anal. Math., 42 (2016), 339–352 | DOI | MR | Zbl

[6] Arestov V. V., “Integral inequalities for algebraic polynomials with restriction on their zeros”, Anal. Math., 17 (1991), 11–24 | DOI | MR

[7] Arestov V. V., “Ob integralnykh neravenstvakh dlya trigonometricheskikh polinomov i ikh proizvodnykh”, Izv. AN SSSR. Ser. matem., 45:1 (1981), 3–22

[8] Pólya G., Szegö G., Problems and Theorem in Analysis, v. I, Springer-Verlag, Berlin, 1978 | MR