Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2022_1_a7, author = {Y. A. Michailovskaya and A. N. Frolov}, title = {Computable linear orders and the {Ershov} hierarchy}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {85--89}, publisher = {mathdoc}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2022_1_a7/} }
Y. A. Michailovskaya; A. N. Frolov. Computable linear orders and the Ershov hierarchy. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2022), pp. 85-89. http://geodesic.mathdoc.fr/item/IVM_2022_1_a7/
[1] Mikhailovskaya Ya. A., Frolov A. N., “Vychislimye lineinye poryadki i ierarkhiya Ershova”, Izv. vuzov. Matem., 2018, no. 1, 67–74 | MR | Zbl
[2] Moses M., “Recursive linear orders with recursive successivities”, Ann. Pure and Appl. Logic, 27 (1984), 253–264 | DOI | MR | Zbl
[3] Moses M., Recursive Properties of Isomophism Types, Ph.D. Thesis, Monash Univ., Clayton, Victoria, Australia, 1983 | MR | Zbl
[4] Moses M., “Relations intrinsically recursive in linear orders”, Z. Math. Logik Grundlag. Math., 32 (1986), 467–472 | DOI | MR | Zbl
[5] Chubb J., Frolov A., Harizanov V., “Degree spectra of the successor relation of computable linear orderings”, Archive Math. Logic, 48:1 (2009), 7–13 | DOI | MR | Zbl
[6] Frolov A. N., “Predstavleniya otnosheniya sosedstva vychislimogo lineinogo poryadka”, Izv. vuzov. Matem., 2010, no. 7, 73–85 | Zbl
[7] Frolov A. N., “Zametka o $\Delta^0_2$-spektrakh lineinykh poryadkov i spektrakh otnosheniya sosedstva na nikh”, Izv. vuzov. Matem., 2013, no. 11, 74–78 | Zbl
[8] Zubkov M. V., “Initial segments of computable linear orders with additional computable predicates”, Algebra and Logic, 48:5 (2009), 321–329 | DOI | MR | Zbl
[9] Turner W. P., Computable linear orders and Turing reductions, Master's Thesis, Univ. Connecticut, 2012
[10] Bikmukhametov R. I., “Nachalnye segmenty vychislimykh lineinykh poryadkov s vychislimymi estestvennymi otnosheniyami”, Izv. vuzov. Matem., 2016, no. 6, 15–26 | MR | Zbl
[11] Bikmukhametov R. I., “O $\Sigma^0_2$-nachalnykh segmentakh vychislimykh lineinykh poryadkov”, Algebra i logika, 53:3 (2014), 413–415 | MR | Zbl
[12] Bikmukhametov R. I., “Codings on Linear Orders and Algorithmic Independence of Natural Relations”, Lobachevskii J. Math., 35:4 (2014), 326–331 | DOI | MR
[13] Bikmukhametov R. I., “Algoritmicheskaya nezavisimost estestvennykh otnoshenii na vychislimykh lineinykh poryadkakh”, Uchen. zap. Kazan. un-ta. Ser. Fiz.-matem. nauki, 155:3 (2013), 80–90 | MR
[14] Bikmukhametov R. I., Eryashkin M. S., Frolov A. N., “Spektr otnosheniya bloka 1-vychislimykh lineinykh poryadkov”, Uchen. zap. Kazansk. un-ta. Ser. Fiz.-matem. nauki, 159, no. 3, 2017, 296–305 | MR
[15] Remmel J. B., “Recursively categorical linear orderings”, Proc. Amer. Math. Soc., 83 (1981), 387–391 | DOI | MR | Zbl
[16] Downey R. G., Jockusch C. G., “Every low Boolean algebra is isomorphic to a recursive one”, Proc. American Math. Soc., 122:3 (1994), 871–880 | DOI | MR | Zbl
[17] Thurber J., “Every $ low_{2} $ Boolean algebra has a recursive copy”, Proc. American Math. Soc., 123:12 (1995), 3859–3866 | MR | Zbl
[18] Knight J. F., Stob M., “Computable Boolean algebras”, The J. Symbolic Logic, 65:4 (2000), 1605–1623 | DOI | MR | Zbl
[19] Montalban A., “Notes on the jump of a structure”, Lect. Notes in Computer Sci., 5635, 2009, 372–378 | DOI | MR | Zbl
[20] Frolov A. N., “$\Delta_2^0$-copies of linear orderings”, Algebra and Logic, 45:3 (2006), 201–209 | DOI | MR | Zbl
[21] Frolov A. N., “Lineinye poryadki nizkoi stepeni”, Sib. matem. zhurn., 51:5 (2010), 1147–1162 | MR | Zbl
[22] Frolov A. N., “Low linear orderings”, J. Logic Comput., 22:4 (2012), 745–754 | DOI | MR | Zbl
[23] Frolov A. N., “Scattered linear orderings with no computable presentation”, Lobachevskii J. Math., 35:1 (2014), 19–22 | DOI | MR | Zbl
[24] Frolov A. N., “Computable Presentability of Countable Linear Orders”, J. Math. Sci. (United States), 256:2 (2021), 199–233 | DOI | Zbl
[25] Alaev P. E., Frolov A. N., Thurber J., “Computability on linear orderings enriched with predicates”, Algebra and Logic, 48:5 (2009), 313–320 | DOI | MR | Zbl
[26] Hirschfeldt D. R., “Degree spectra of intrinsically c.e. relations”, J. Symbolic Logic, 66 (2001), 441–469 | DOI | MR | Zbl