Computable linear orders and the Ershov hierarchy
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2022), pp. 85-89

Voir la notice de l'article provenant de la source Math-Net.Ru

This work corrects the inaccuracy of the authors' previous work. Namely, we correctly prove that there exists a computable linear order and a series of natural relations on it, the spectrum of which consist of exactly all $n$-c.e. degrees (for any natural number $n$).
Keywords: computable linear orders, the degree spectrum of relations, $n$-computable enumerable ($n$-c.e.) degrees.
@article{IVM_2022_1_a7,
     author = {Y. A. Michailovskaya and A. N. Frolov},
     title = {Computable linear orders and the {Ershov} hierarchy},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {85--89},
     publisher = {mathdoc},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_1_a7/}
}
TY  - JOUR
AU  - Y. A. Michailovskaya
AU  - A. N. Frolov
TI  - Computable linear orders and the Ershov hierarchy
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 85
EP  - 89
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_1_a7/
LA  - ru
ID  - IVM_2022_1_a7
ER  - 
%0 Journal Article
%A Y. A. Michailovskaya
%A A. N. Frolov
%T Computable linear orders and the Ershov hierarchy
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 85-89
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_1_a7/
%G ru
%F IVM_2022_1_a7
Y. A. Michailovskaya; A. N. Frolov. Computable linear orders and the Ershov hierarchy. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2022), pp. 85-89. http://geodesic.mathdoc.fr/item/IVM_2022_1_a7/