Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2022_1_a3, author = {R. I. Kadiev and A. V. Ponosov}, title = {Global stability of systems of nonlinear {It\^{o}} differential equations with aftereffect and {N.V.} {Azbelev's} $W$-method}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {38--56}, publisher = {mathdoc}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2022_1_a3/} }
TY - JOUR AU - R. I. Kadiev AU - A. V. Ponosov TI - Global stability of systems of nonlinear It\^{o} differential equations with aftereffect and N.V. Azbelev's $W$-method JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2022 SP - 38 EP - 56 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2022_1_a3/ LA - ru ID - IVM_2022_1_a3 ER -
%0 Journal Article %A R. I. Kadiev %A A. V. Ponosov %T Global stability of systems of nonlinear It\^{o} differential equations with aftereffect and N.V. Azbelev's $W$-method %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2022 %P 38-56 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2022_1_a3/ %G ru %F IVM_2022_1_a3
R. I. Kadiev; A. V. Ponosov. Global stability of systems of nonlinear It\^{o} differential equations with aftereffect and N.V. Azbelev's $W$-method. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2022), pp. 38-56. http://geodesic.mathdoc.fr/item/IVM_2022_1_a3/
[1] Yang L., Zhong S., “Global stability of a stage-structured predator-prey model with stochastic perturbation”, Discr. Dyn. in Nature and Soc., 2014, 512817 | MR | Zbl
[2] Lv J., Liu H., Zhang Y., “Globally asymptotic stability of a stochastic mutualism model with saturated response”, Filomat, 33:12 (2019), 3893–3900 | DOI | MR
[3] Zhong X., Deng F., “Extinction and persistent of a stochastic multi-group SIR epidemic model”, J. Control Sci. and Engin., 1 (2013), 13–22
[4] Otunuga M. O., “Global stability of nonlinear stochastic SEI epidemic model with fluctuations in transmission rate of disease”, Intern. J. Stoch. An., 2017, 6313620 | MR | Zbl
[5] Meng X., Tian M., Hu S., “Stability analysis of stochastic recurrent neural networks with unbounded time-varying delays”, Neurocomputing, 74:6 (2011), 949–953 | DOI | MR
[6] Dong R., Mao X. Birrell S. A., “Exponential stabilisation of continuous-time periodic stochastic systems by feedback control based on periodic discrete-time observations”, IET Control Theory Appl., 14:6 (2020), 909–919 | DOI | MR
[7] Kolmanovskii V. B., Nosov V. R., Ustoichivost i periodicheskie rezhimy reguliruemykh sistem s posledeistviem, Nauka, M., 1981 | MR
[8] Tsarkov E. F., Sluchainye vozmuscheniya differentsionalno–funktsionalnykh uravnenii, Zinatne, Riga, 1989
[9] Mao X. R., Stochastic Differential Equations and Applications, 2nd edition, Horwood Publishing Ltd., Sawston, 2008 | MR
[10] Mohammed S.-E.F., “Stochastic Functional Differential Equations With Memory. Theory, Examples and Applications”, Proc. The Sixth Workshop on Stochastic Anal. (Geilo, Norway, 1996), 1–91 | MR
[11] Azbelev N. V., Simonov P. M., Stability of Differential Equations With Aftereffect, Taylor and Francis, London, 2002 | MR
[12] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., “Introduction to the Theory of Functional Differential Equations”, Methods and Appl., Hindawi, New York, 2007 | MR | Zbl
[13] Berezanskii L. M., “Razvitie W-metoda N. V. Azbeleva v zadachakh ustoichivosti reshenii lineinykh funktsionalno-differentsialnykh uravnenii”, Differents. uravneniya, 22:5 (1986), 739–750 | MR
[14] Kadiev R. I., Ustoichivost reshenii stokhasticheskikh funktsionalno-differentsialnykh uravnenii, disc. \ldots dok. fiz.-matem. nauk, Makhachkala, 2000
[15] Kadiev R. I., Ponosov A. V., “Ustoichivost reshenii lineinykh impulsnykh sistem differentsialnykh uravnenii Ito s ogranichennymi zapazdyvaniyami”, Differents. uravneniya, 46:4 (2010), 486–498 | MR | Zbl
[16] Kadiev R., Ponosov A., “The W-transform in stability analysis for stochastic linear functional difference equations”, J. Math. Anal. and Appl., 389:2 (2012), 1239–1250 | DOI | MR | Zbl
[17] Kadiev R. I., “Ustoichivost reshenii lineinykh raznostnykh uravnenii Ito s posledeistviem”, Differents. uravneniya, 51:3 (2015), 293–301 | MR | Zbl
[18] Kadiev R. I., “Ustoichivost reshenii sistem lineinykh raznostnykh uravnenii Ito s posledeistviem otnositelno nachalnykh dannykh”, Differents. uravneniya, 51:7 (2015), 842–850 | Zbl
[19] Domoshnitskii A. I., Sheina M. V., “Neotritsatelnost matritsy Koshi i ustoichivost sistemy lineinykh differentsialnykh uravnenii s zapazdyvayuschim argumentom”, Differents. uravneniya, 25:2 (1989), 201–208 | MR
[20] Domoshnitsky A., Gitman M., Shklyar R., “Stability and estimate of solution to uncertain neutral delay systems”, Bound Value Probl., 2014, 55 | DOI | MR | Zbl
[21] Domoshnitsky A., Shklyar R., Gitman M., Stolbov V., “Positivity of Fundamental Matrix and Exponential Stability of Delay Differential System”, Abstr. Appl. Anal., 2014, 490816, 1–9 | MR
[22] Domoshnitsky A., Fridman E., “A positivity-based approach to delay-dependent stability of systems with large time-varying delays”, Systems Control Letters, 97 (2016), 139–148 | DOI | MR | Zbl
[23] Domoshnitsky A., Shklyar. R., “Positivity for non-Metzler systems and its applications to stability of time-varying delay systems”, Systems Control Letters, 118 (2018), 44–51 | DOI | MR | Zbl
[24] Kadiev R. I., Ponosov A. V., “Polozhitelnaya obratimost matrits i ustoichivost differentsialnykh uravnenii Ito s zapazdyvaniyami”, Differents. uravneniya, 53:5 (2017), 579–590 | Zbl
[25] Kadiev R. I., Ponosov A. V., “Polozhitelnaya obratimost matrits i eksponentsialnaya ustoichivost impulsnykh sistem lineinykh differentsialnykh uravnenii Ito s ogranichennymi zapazdyvaniyami”, Izv. vuzov. Matem., 2020, no. 8, 18–35 | Zbl
[26] Kadiev R. I., “K voprosu ob ustoichivosti stokhasticheskikh funktsionalno–differentsialnykh uravnenii po pervomu priblizheniyu”, Izv. vuzov. Matem., 1999, no. 8, 18–35
[27] Kadiev R. I., “Ustoichivost reshenii nelineinykh funktsionalno-differentsialnykh uravnenii s impulsnymi vozdeistviyami po lineinomu priblizheniyu”, Differents. uravneniya. Minsk, 49:8 (2013), 963–970 | MR | Zbl
[28] Berezansky L., Braverman E., “Idels L. Nev Global Exponential Stability Criteria for Nonlinear Delay Differential Systems with Applications to BAM Neural Networks”, Appl. Math. and Computation, 243 (2014), 899–910 | DOI | MR | Zbl
[29] Ponosov A. V., “Metod nepodvizhnoi tochki v teorii stokhasticheskikh differentsialnykh uravnenii”, DAN SSSR, 299:3 (1988), 426–429 | Zbl
[30] Kadiev R. I., “Suschestvovanie i edinstvennost resheniya zadachi Koshi dlya funktsionalno–differentsialnykh uravnenii po semimartingalu”, Izv. vuzov. Matem., 1995, no. 10, 35–40
[31] Bellman R., Vvedenie v teoriyu matrits, Nauka, M., 1969
[32] Liptser R. Sh., Shiryaev A. N., Teoriya martingalov, Nauka, M., 1986 | MR
[33] Neveu I., Discrete Parameter Martingales, North-Holland Publishing, Amsterdam, 1975 | MR | Zbl