Global stability of systems of nonlinear It\^{o} differential equations with aftereffect and N.V. Azbelev's $W$-method
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2022), pp. 38-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work studies the global moment stability of solutions of systems of nonlinear differential Ito equations with delays. A modified regularization method ($W$ -method) for the analysis of various types of stability of such systems, based on the choice of the auxiliary equations and applications of the theory of positive invertible matrices, is proposed and justified. Development of this method for deterministic functional differential equations is due to N.V. Azbelev and his students. Sufficient conditions for the moment stability of solutions in terms of the coefficients for sufficiently general as well as specific classes of Itô equations are given.
Keywords: nonlinear Itô equations, stability of solutions, method of auxiliary equations, positive invertibility of matrices, bounded delays.
@article{IVM_2022_1_a3,
     author = {R. I. Kadiev and A. V. Ponosov},
     title = {Global stability of systems of nonlinear {It\^{o}} differential equations with aftereffect and {N.V.} {Azbelev's} $W$-method},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {38--56},
     publisher = {mathdoc},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_1_a3/}
}
TY  - JOUR
AU  - R. I. Kadiev
AU  - A. V. Ponosov
TI  - Global stability of systems of nonlinear It\^{o} differential equations with aftereffect and N.V. Azbelev's $W$-method
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 38
EP  - 56
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_1_a3/
LA  - ru
ID  - IVM_2022_1_a3
ER  - 
%0 Journal Article
%A R. I. Kadiev
%A A. V. Ponosov
%T Global stability of systems of nonlinear It\^{o} differential equations with aftereffect and N.V. Azbelev's $W$-method
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 38-56
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_1_a3/
%G ru
%F IVM_2022_1_a3
R. I. Kadiev; A. V. Ponosov. Global stability of systems of nonlinear It\^{o} differential equations with aftereffect and N.V. Azbelev's $W$-method. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2022), pp. 38-56. http://geodesic.mathdoc.fr/item/IVM_2022_1_a3/

[1] Yang L., Zhong S., “Global stability of a stage-structured predator-prey model with stochastic perturbation”, Discr. Dyn. in Nature and Soc., 2014, 512817 | MR | Zbl

[2] Lv J., Liu H., Zhang Y., “Globally asymptotic stability of a stochastic mutualism model with saturated response”, Filomat, 33:12 (2019), 3893–3900 | DOI | MR

[3] Zhong X., Deng F., “Extinction and persistent of a stochastic multi-group SIR epidemic model”, J. Control Sci. and Engin., 1 (2013), 13–22

[4] Otunuga M. O., “Global stability of nonlinear stochastic SEI epidemic model with fluctuations in transmission rate of disease”, Intern. J. Stoch. An., 2017, 6313620 | MR | Zbl

[5] Meng X., Tian M., Hu S., “Stability analysis of stochastic recurrent neural networks with unbounded time-varying delays”, Neurocomputing, 74:6 (2011), 949–953 | DOI | MR

[6] Dong R., Mao X. Birrell S. A., “Exponential stabilisation of continuous-time periodic stochastic systems by feedback control based on periodic discrete-time observations”, IET Control Theory Appl., 14:6 (2020), 909–919 | DOI | MR

[7] Kolmanovskii V. B., Nosov V. R., Ustoichivost i periodicheskie rezhimy reguliruemykh sistem s posledeistviem, Nauka, M., 1981 | MR

[8] Tsarkov E. F., Sluchainye vozmuscheniya differentsionalno–funktsionalnykh uravnenii, Zinatne, Riga, 1989

[9] Mao X. R., Stochastic Differential Equations and Applications, 2nd edition, Horwood Publishing Ltd., Sawston, 2008 | MR

[10] Mohammed S.-E.F., “Stochastic Functional Differential Equations With Memory. Theory, Examples and Applications”, Proc. The Sixth Workshop on Stochastic Anal. (Geilo, Norway, 1996), 1–91 | MR

[11] Azbelev N. V., Simonov P. M., Stability of Differential Equations With Aftereffect, Taylor and Francis, London, 2002 | MR

[12] Azbelev N. V., Maksimov V. P., Rakhmatullina L. F., “Introduction to the Theory of Functional Differential Equations”, Methods and Appl., Hindawi, New York, 2007 | MR | Zbl

[13] Berezanskii L. M., “Razvitie W-metoda N. V. Azbeleva v zadachakh ustoichivosti reshenii lineinykh funktsionalno-differentsialnykh uravnenii”, Differents. uravneniya, 22:5 (1986), 739–750 | MR

[14] Kadiev R. I., Ustoichivost reshenii stokhasticheskikh funktsionalno-differentsialnykh uravnenii, disc. \ldots dok. fiz.-matem. nauk, Makhachkala, 2000

[15] Kadiev R. I., Ponosov A. V., “Ustoichivost reshenii lineinykh impulsnykh sistem differentsialnykh uravnenii Ito s ogranichennymi zapazdyvaniyami”, Differents. uravneniya, 46:4 (2010), 486–498 | MR | Zbl

[16] Kadiev R., Ponosov A., “The W-transform in stability analysis for stochastic linear functional difference equations”, J. Math. Anal. and Appl., 389:2 (2012), 1239–1250 | DOI | MR | Zbl

[17] Kadiev R. I., “Ustoichivost reshenii lineinykh raznostnykh uravnenii Ito s posledeistviem”, Differents. uravneniya, 51:3 (2015), 293–301 | MR | Zbl

[18] Kadiev R. I., “Ustoichivost reshenii sistem lineinykh raznostnykh uravnenii Ito s posledeistviem otnositelno nachalnykh dannykh”, Differents. uravneniya, 51:7 (2015), 842–850 | Zbl

[19] Domoshnitskii A. I., Sheina M. V., “Neotritsatelnost matritsy Koshi i ustoichivost sistemy lineinykh differentsialnykh uravnenii s zapazdyvayuschim argumentom”, Differents. uravneniya, 25:2 (1989), 201–208 | MR

[20] Domoshnitsky A., Gitman M., Shklyar R., “Stability and estimate of solution to uncertain neutral delay systems”, Bound Value Probl., 2014, 55 | DOI | MR | Zbl

[21] Domoshnitsky A., Shklyar R., Gitman M., Stolbov V., “Positivity of Fundamental Matrix and Exponential Stability of Delay Differential System”, Abstr. Appl. Anal., 2014, 490816, 1–9 | MR

[22] Domoshnitsky A., Fridman E., “A positivity-based approach to delay-dependent stability of systems with large time-varying delays”, Systems Control Letters, 97 (2016), 139–148 | DOI | MR | Zbl

[23] Domoshnitsky A., Shklyar. R., “Positivity for non-Metzler systems and its applications to stability of time-varying delay systems”, Systems Control Letters, 118 (2018), 44–51 | DOI | MR | Zbl

[24] Kadiev R. I., Ponosov A. V., “Polozhitelnaya obratimost matrits i ustoichivost differentsialnykh uravnenii Ito s zapazdyvaniyami”, Differents. uravneniya, 53:5 (2017), 579–590 | Zbl

[25] Kadiev R. I., Ponosov A. V., “Polozhitelnaya obratimost matrits i eksponentsialnaya ustoichivost impulsnykh sistem lineinykh differentsialnykh uravnenii Ito s ogranichennymi zapazdyvaniyami”, Izv. vuzov. Matem., 2020, no. 8, 18–35 | Zbl

[26] Kadiev R. I., “K voprosu ob ustoichivosti stokhasticheskikh funktsionalno–differentsialnykh uravnenii po pervomu priblizheniyu”, Izv. vuzov. Matem., 1999, no. 8, 18–35

[27] Kadiev R. I., “Ustoichivost reshenii nelineinykh funktsionalno-differentsialnykh uravnenii s impulsnymi vozdeistviyami po lineinomu priblizheniyu”, Differents. uravneniya. Minsk, 49:8 (2013), 963–970 | MR | Zbl

[28] Berezansky L., Braverman E., “Idels L. Nev Global Exponential Stability Criteria for Nonlinear Delay Differential Systems with Applications to BAM Neural Networks”, Appl. Math. and Computation, 243 (2014), 899–910 | DOI | MR | Zbl

[29] Ponosov A. V., “Metod nepodvizhnoi tochki v teorii stokhasticheskikh differentsialnykh uravnenii”, DAN SSSR, 299:3 (1988), 426–429 | Zbl

[30] Kadiev R. I., “Suschestvovanie i edinstvennost resheniya zadachi Koshi dlya funktsionalno–differentsialnykh uravnenii po semimartingalu”, Izv. vuzov. Matem., 1995, no. 10, 35–40

[31] Bellman R., Vvedenie v teoriyu matrits, Nauka, M., 1969

[32] Liptser R. Sh., Shiryaev A. N., Teoriya martingalov, Nauka, M., 1986 | MR

[33] Neveu I., Discrete Parameter Martingales, North-Holland Publishing, Amsterdam, 1975 | MR | Zbl