Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2022_1_a2, author = {N. A. Zverev and A. V. Zemskov and D. V. Tarlakovskii}, title = {Unsteady coupled elastic diffusion processes in an orthotropic cylinder taking into account diffusion fluxes relaxation}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {25--37}, publisher = {mathdoc}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2022_1_a2/} }
TY - JOUR AU - N. A. Zverev AU - A. V. Zemskov AU - D. V. Tarlakovskii TI - Unsteady coupled elastic diffusion processes in an orthotropic cylinder taking into account diffusion fluxes relaxation JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2022 SP - 25 EP - 37 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2022_1_a2/ LA - ru ID - IVM_2022_1_a2 ER -
%0 Journal Article %A N. A. Zverev %A A. V. Zemskov %A D. V. Tarlakovskii %T Unsteady coupled elastic diffusion processes in an orthotropic cylinder taking into account diffusion fluxes relaxation %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2022 %P 25-37 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2022_1_a2/ %G ru %F IVM_2022_1_a2
N. A. Zverev; A. V. Zemskov; D. V. Tarlakovskii. Unsteady coupled elastic diffusion processes in an orthotropic cylinder taking into account diffusion fluxes relaxation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2022), pp. 25-37. http://geodesic.mathdoc.fr/item/IVM_2022_1_a2/
[1] Knyazeva A. G., Vvedenie v termodinamiku neobratimykh protsessov, Ivan Fedorov, Tomsk, 2014
[2] Afram A. Y., Khader S. E., “$2$D Problem for a Half-Space under the Theory of Fractional Thermoelastic Diffusion”, American J. Sci. and industrial research, 6:3 (2014), 47–57
[3] Choudhary S., Deswal S., “Mechanical loads on a generalized thermoelastic medium with diffusion”, Meccanica, 45 (2010), 401–413 | DOI | MR | Zbl
[4] Kumar R., Chawla V., “A study of Green's functions for three-dimensional problem in thermoelastic diffusion media”, African J. Math. and Comput. Sci. research, 7:7 (2014), 68–78 | MR
[5] Sharma J. N., Sharma N. K., Sharma K. K., “Transient Waves Due to Mechanical Loads in Elasto-Thermo-Diffusive Solids”, Advanc. in Appl. Math. and Mechan., 3:1 (2011), 87–108 | DOI | MR | Zbl
[6] Sherief H. H., El-Maghraby N. M., “A Thick Plate Problem in the Theory of Generalized Thermoelastic Diffusion”, Int. J. Thermophys., 30 (2009), 2044–2057 | DOI
[7] Aouadi M., “Variable electrical and thermal conductivity in the theory of generalized thermoelastic diffusion”, Zeitschrift fur Angewandte Math. und Phys., 57:2 (2005), 350–366 | DOI | MR
[8] Deswal S., Kalkal K., “A two-dimensional generalized electro-magneto-thermoviscoelastic problem for a half-space with diffusion”, International J. Thermal Sci., 50:5 (2011), 749–759 | DOI
[9] Kumar R., Chawla V., “Fundamental solution for two-dimensional problem in orthotropic piezothermoelastic diffusion media”, Materials Phys. and Mechan., 16 (2013), 159–174
[10] Zhang J., Li Y., “A Two-Dimensional Generalized Electromagnetothermoelastic Diffusion Problem for a Rotating Half-Space”, Hindawi Publishing Corporation Math. Problems in Engineering, 2014 (2014), 964218, 1–12
[11] Cataneo C., “A form of heat conduction equation which eliminates the paradox of instantaneous propagation”, Compte Rendus, 247 (1958), 431–433
[12] Vernotte F., “Les paradoxes de la theorie continue de lequation de la chaleur”, CR Acad. Sci., 246:22 (1958), 3154–3155 | MR | Zbl
[13] Lykov A. V., Teoriya teploprovodnosti, Vyssh. shk., Moskva, 1967
[14] Komar L. A., Svistkov A. L., “Termodinamika uprugogo materiala s relaksiruyuschim potokom tepla”, Izv. Rossiisk. akademii nauk. Mekhan. tv. tela, 4 (2020), 152–157
[15] Formalev V. F., Teploperenos v anizotropnykh tverdykh telakh. Chislennye metody, teplovye volny, obratnye zadachi, Fizmatlit, M., 2015
[16] Bachher M., Sarkar N., “Fractional order magneto-thermoelasticity in a rotating media with one relaxation time”, Math. models in Engineering, 2:1 (2016), 57–68
[17] Deswal S., Kalkal K. K., Sheoran S. S., “Axi-symmetric generalized thermoelastic diffusion problem with two-temperature and initial stress under fractional order heat conduction”, Phys. B: Condensed Matter, 496 (2016), 57–68 | DOI
[18] Ezzat M. A., Fayik M. A., “Fractional order theory of thermoelastic diffusion”, J. Thermal Stresses, 34 (2011), 851–872 | DOI | MR
[19] Aouadi M., “A problem for an infinite elastic body with a spherical cavity in the theory of generalized thermoelastic diffusion”, International J. Solids and Structures, 44 (2007), 5711–5722 | DOI | MR | Zbl
[20] Elhagary M. A., “Generalized thermoelastic diffusion problem for an infinitely long hollow cylinder for short times”, Acta Mech., 218 (2011), 205–215 | DOI | Zbl
[21] Hwang C. C., Huang I. B., “Diffusion in hollow cylinders with mathematical treatment”, International J. Engineering Research and Development, 3:8 (2012), 57–75
[22] Kumar R., Kansal T., “Propagation of cylindrical Rayleigh waves in a transversly isotropic thermoelastic diffusive solid half-space”, J. Theoretical and Appl. Mechan., 43:3 (2013), 3–20 | DOI | MR | Zbl
[23] Tripathi J. J., Kedar G. D., Deshmukh K. C., “Two-dimensional generalized thermoelastic diffusion in a half-space under axi-symmetric distributions”, Acta Mech., 226 (2015), 3263–3274 | DOI | MR | Zbl
[24] Xia R. H., Tian X. G., Shen Y. P., “The influence of diffusion on generalized thermoelastic problems of infinite body with a cylindrical cavity”, International J. Engineering Sci., 47 (2009), 669–679 | DOI | MR | Zbl
[25] Bhattacharya D., Pal P., Kanoria M., “Finite Element Method to Study Elasto-Thermodiffusive Response inside a Hollow Cylinder with Three-Phase-Lag Effect”, Int. J. Comput. Sci. and Engineering, 7:1 (2019), 148–156
[26] Kumar R., Devi S., “Deformation of modified couple stress thermoelastic diffusion in a thick circular plate due to heat sources”, CMST, 25:4 (2019), 167–176 | DOI
[27] Lata P., “Time harmonic interactions in fractional thermoelastic diffusive thick circular plate”, Coupled Syst. Mechan., 8:1 (2019), 39–53 | MR
[28] Zemskov A. V., Tarlakovskii D. V., “Polar-symmetric problem of elastic diffusion for isotropic multi-component plane”, IOP Conference Ser. Materials Sci. and Engineering, 158:1 (2016), 1–9 | DOI
[29] Zemskov A. V., Tarlakovskii D. V., “Polyarno-simmetrichnaya zadacha uprugoi diffuzii dlya mnogokomponentnoi sredy”, Probl. prochnosti i plastichnosti, 80 (2018), 5–14
[30] Zverev N. A., Zemskov A. V., Tarlakovskii D. V., “Modelirovanie nestatsionarnykh svyazannykh mekhanodiffuzionnykh protsessov v izotropnom sploshnom tsilindre”, Probl. prochnosti i plastichnosti, 82:2 (2020), 156–167 | DOI
[31] Koshlyakov N. S., Gliner E. B., Smirnov M. M., Osnovnye differentsialnye uravneniya matematicheskoi fiziki, Gl. izd-vo fiz.-matem. lit., M., 1962 | MR
[32] Ditkin V. A., Prudnikov A. P., Spravochnik po operatsionnomu ischisleniyu, Vyssh. shk., M., 1965 | MR
[33] Matsevityi Yu. M., Vakulenko K. V., Kazak I. B., “O zalechivanii defektov v metallakh pri plasticheskoi deformatsii $($analiticheskii obzor$)$”, Probl. mashinostroeniya, 15:1 (2012), 66–76
[34] Babichev A. P., Babushkina N. A., Bratkovskii A. M. i dr., Fizicheskie velichiny, Spravochnik, eds. Grigoreva I. S., Meilikhova I. Z., Energoatomizdat, Moskva, 1991
[35] Vestyak A. V., Zemskov A. V., “Model nestatsionarnykh uprugodiffuzionnykh kolebanii sharnirno zakreplennoi balki Timoshenko”, Izv. Rossiisk. Akademii nauk. Mekhan. tv. tela, 5 (2020), 107–119 | DOI
[36] Zemskov A. V., Okonechnikov A.S, Tarlakovskii D. V., “Unsteady elastic-diffusion oscillations of a simply supported Euler-Bernoulli beam under the distributed transverse load action”, Multiscale Solid Mechan., Adv. Structured Materials, 141, eds. Holm Altenbach, Victor A. Eremeyev, Leonid A. Igumnov, 2021, 487–499 | DOI