Unsteady coupled elastic diffusion processes in an orthotropic cylinder taking into account diffusion fluxes relaxation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2022), pp. 25-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

We considered the one-dimensional problem of stress-strain state determining of a orthotropic multicomponent cylinder. The cylinder is affected by unsteady surface elastic diffusive perturbations. The coupled system of elastic diffusion equations in the polar coordinate system is used as a mathematical model. Diffusion relaxation effects, implying finite rates of diffusion flux propagation, are taken into account. The problem solution is sought in the integral form and is represented as convolutions of Green's functions with functions defining surface elastodiffusive perturbations. We used the Laplace transform by time, and Fourier series expansion in first kind Bessel functions to find the Green's functions. The Laplace transform inversion is done analytically due to residues and operational calculus tables. An analytical solution to the problem is obtained. Numerical study of the mechanical and diffusion fields interaction in a continuous orthotropic cylinder is performed. We used three-component material as an example. The cylinder is under pressure uniformly distributed over the surface. We used three-component material as an example.
Mots-clés : elastic diffusion, Laplace transform
Keywords: Fourier series, Green's function, polar-symmetric problem, unsteady problem, Bessel function.
@article{IVM_2022_1_a2,
     author = {N. A. Zverev and A. V. Zemskov and D. V. Tarlakovskii},
     title = {Unsteady coupled elastic diffusion processes in an orthotropic cylinder taking into account diffusion fluxes relaxation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {25--37},
     publisher = {mathdoc},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_1_a2/}
}
TY  - JOUR
AU  - N. A. Zverev
AU  - A. V. Zemskov
AU  - D. V. Tarlakovskii
TI  - Unsteady coupled elastic diffusion processes in an orthotropic cylinder taking into account diffusion fluxes relaxation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 25
EP  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_1_a2/
LA  - ru
ID  - IVM_2022_1_a2
ER  - 
%0 Journal Article
%A N. A. Zverev
%A A. V. Zemskov
%A D. V. Tarlakovskii
%T Unsteady coupled elastic diffusion processes in an orthotropic cylinder taking into account diffusion fluxes relaxation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 25-37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_1_a2/
%G ru
%F IVM_2022_1_a2
N. A. Zverev; A. V. Zemskov; D. V. Tarlakovskii. Unsteady coupled elastic diffusion processes in an orthotropic cylinder taking into account diffusion fluxes relaxation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2022), pp. 25-37. http://geodesic.mathdoc.fr/item/IVM_2022_1_a2/

[1] Knyazeva A. G., Vvedenie v termodinamiku neobratimykh protsessov, Ivan Fedorov, Tomsk, 2014

[2] Afram A. Y., Khader S. E., “$2$D Problem for a Half-Space under the Theory of Fractional Thermoelastic Diffusion”, American J. Sci. and industrial research, 6:3 (2014), 47–57

[3] Choudhary S., Deswal S., “Mechanical loads on a generalized thermoelastic medium with diffusion”, Meccanica, 45 (2010), 401–413 | DOI | MR | Zbl

[4] Kumar R., Chawla V., “A study of Green's functions for three-dimensional problem in thermoelastic diffusion media”, African J. Math. and Comput. Sci. research, 7:7 (2014), 68–78 | MR

[5] Sharma J. N., Sharma N. K., Sharma K. K., “Transient Waves Due to Mechanical Loads in Elasto-Thermo-Diffusive Solids”, Advanc. in Appl. Math. and Mechan., 3:1 (2011), 87–108 | DOI | MR | Zbl

[6] Sherief H. H., El-Maghraby N. M., “A Thick Plate Problem in the Theory of Generalized Thermoelastic Diffusion”, Int. J. Thermophys., 30 (2009), 2044–2057 | DOI

[7] Aouadi M., “Variable electrical and thermal conductivity in the theory of generalized thermoelastic diffusion”, Zeitschrift fur Angewandte Math. und Phys., 57:2 (2005), 350–366 | DOI | MR

[8] Deswal S., Kalkal K., “A two-dimensional generalized electro-magneto-thermoviscoelastic problem for a half-space with diffusion”, International J. Thermal Sci., 50:5 (2011), 749–759 | DOI

[9] Kumar R., Chawla V., “Fundamental solution for two-dimensional problem in orthotropic piezothermoelastic diffusion media”, Materials Phys. and Mechan., 16 (2013), 159–174

[10] Zhang J., Li Y., “A Two-Dimensional Generalized Electromagnetothermoelastic Diffusion Problem for a Rotating Half-Space”, Hindawi Publishing Corporation Math. Problems in Engineering, 2014 (2014), 964218, 1–12

[11] Cataneo C., “A form of heat conduction equation which eliminates the paradox of instantaneous propagation”, Compte Rendus, 247 (1958), 431–433

[12] Vernotte F., “Les paradoxes de la theorie continue de lequation de la chaleur”, CR Acad. Sci., 246:22 (1958), 3154–3155 | MR | Zbl

[13] Lykov A. V., Teoriya teploprovodnosti, Vyssh. shk., Moskva, 1967

[14] Komar L. A., Svistkov A. L., “Termodinamika uprugogo materiala s relaksiruyuschim potokom tepla”, Izv. Rossiisk. akademii nauk. Mekhan. tv. tela, 4 (2020), 152–157

[15] Formalev V. F., Teploperenos v anizotropnykh tverdykh telakh. Chislennye metody, teplovye volny, obratnye zadachi, Fizmatlit, M., 2015

[16] Bachher M., Sarkar N., “Fractional order magneto-thermoelasticity in a rotating media with one relaxation time”, Math. models in Engineering, 2:1 (2016), 57–68

[17] Deswal S., Kalkal K. K., Sheoran S. S., “Axi-symmetric generalized thermoelastic diffusion problem with two-temperature and initial stress under fractional order heat conduction”, Phys. B: Condensed Matter, 496 (2016), 57–68 | DOI

[18] Ezzat M. A., Fayik M. A., “Fractional order theory of thermoelastic diffusion”, J. Thermal Stresses, 34 (2011), 851–872 | DOI | MR

[19] Aouadi M., “A problem for an infinite elastic body with a spherical cavity in the theory of generalized thermoelastic diffusion”, International J. Solids and Structures, 44 (2007), 5711–5722 | DOI | MR | Zbl

[20] Elhagary M. A., “Generalized thermoelastic diffusion problem for an infinitely long hollow cylinder for short times”, Acta Mech., 218 (2011), 205–215 | DOI | Zbl

[21] Hwang C. C., Huang I. B., “Diffusion in hollow cylinders with mathematical treatment”, International J. Engineering Research and Development, 3:8 (2012), 57–75

[22] Kumar R., Kansal T., “Propagation of cylindrical Rayleigh waves in a transversly isotropic thermoelastic diffusive solid half-space”, J. Theoretical and Appl. Mechan., 43:3 (2013), 3–20 | DOI | MR | Zbl

[23] Tripathi J. J., Kedar G. D., Deshmukh K. C., “Two-dimensional generalized thermoelastic diffusion in a half-space under axi-symmetric distributions”, Acta Mech., 226 (2015), 3263–3274 | DOI | MR | Zbl

[24] Xia R. H., Tian X. G., Shen Y. P., “The influence of diffusion on generalized thermoelastic problems of infinite body with a cylindrical cavity”, International J. Engineering Sci., 47 (2009), 669–679 | DOI | MR | Zbl

[25] Bhattacharya D., Pal P., Kanoria M., “Finite Element Method to Study Elasto-Thermodiffusive Response inside a Hollow Cylinder with Three-Phase-Lag Effect”, Int. J. Comput. Sci. and Engineering, 7:1 (2019), 148–156

[26] Kumar R., Devi S., “Deformation of modified couple stress thermoelastic diffusion in a thick circular plate due to heat sources”, CMST, 25:4 (2019), 167–176 | DOI

[27] Lata P., “Time harmonic interactions in fractional thermoelastic diffusive thick circular plate”, Coupled Syst. Mechan., 8:1 (2019), 39–53 | MR

[28] Zemskov A. V., Tarlakovskii D. V., “Polar-symmetric problem of elastic diffusion for isotropic multi-component plane”, IOP Conference Ser. Materials Sci. and Engineering, 158:1 (2016), 1–9 | DOI

[29] Zemskov A. V., Tarlakovskii D. V., “Polyarno-simmetrichnaya zadacha uprugoi diffuzii dlya mnogokomponentnoi sredy”, Probl. prochnosti i plastichnosti, 80 (2018), 5–14

[30] Zverev N. A., Zemskov A. V., Tarlakovskii D. V., “Modelirovanie nestatsionarnykh svyazannykh mekhanodiffuzionnykh protsessov v izotropnom sploshnom tsilindre”, Probl. prochnosti i plastichnosti, 82:2 (2020), 156–167 | DOI

[31] Koshlyakov N. S., Gliner E. B., Smirnov M. M., Osnovnye differentsialnye uravneniya matematicheskoi fiziki, Gl. izd-vo fiz.-matem. lit., M., 1962 | MR

[32] Ditkin V. A., Prudnikov A. P., Spravochnik po operatsionnomu ischisleniyu, Vyssh. shk., M., 1965 | MR

[33] Matsevityi Yu. M., Vakulenko K. V., Kazak I. B., “O zalechivanii defektov v metallakh pri plasticheskoi deformatsii $($analiticheskii obzor$)$”, Probl. mashinostroeniya, 15:1 (2012), 66–76

[34] Babichev A. P., Babushkina N. A., Bratkovskii A. M. i dr., Fizicheskie velichiny, Spravochnik, eds. Grigoreva I. S., Meilikhova I. Z., Energoatomizdat, Moskva, 1991

[35] Vestyak A. V., Zemskov A. V., “Model nestatsionarnykh uprugodiffuzionnykh kolebanii sharnirno zakreplennoi balki Timoshenko”, Izv. Rossiisk. Akademii nauk. Mekhan. tv. tela, 5 (2020), 107–119 | DOI

[36] Zemskov A. V., Okonechnikov A.S, Tarlakovskii D. V., “Unsteady elastic-diffusion oscillations of a simply supported Euler-Bernoulli beam under the distributed transverse load action”, Multiscale Solid Mechan., Adv. Structured Materials, 141, eds. Holm Altenbach, Victor A. Eremeyev, Leonid A. Igumnov, 2021, 487–499 | DOI