Unsteady coupled elastic diffusion processes in an orthotropic cylinder taking into account diffusion fluxes relaxation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2022), pp. 25-37

Voir la notice de l'article provenant de la source Math-Net.Ru

We considered the one-dimensional problem of stress-strain state determining of a orthotropic multicomponent cylinder. The cylinder is affected by unsteady surface elastic diffusive perturbations. The coupled system of elastic diffusion equations in the polar coordinate system is used as a mathematical model. Diffusion relaxation effects, implying finite rates of diffusion flux propagation, are taken into account. The problem solution is sought in the integral form and is represented as convolutions of Green's functions with functions defining surface elastodiffusive perturbations. We used the Laplace transform by time, and Fourier series expansion in first kind Bessel functions to find the Green's functions. The Laplace transform inversion is done analytically due to residues and operational calculus tables. An analytical solution to the problem is obtained. Numerical study of the mechanical and diffusion fields interaction in a continuous orthotropic cylinder is performed. We used three-component material as an example. The cylinder is under pressure uniformly distributed over the surface. We used three-component material as an example.
Mots-clés : elastic diffusion, Laplace transform
Keywords: Fourier series, Green's function, polar-symmetric problem, unsteady problem, Bessel function.
@article{IVM_2022_1_a2,
     author = {N. A. Zverev and A. V. Zemskov and D. V. Tarlakovskii},
     title = {Unsteady coupled elastic diffusion processes in an orthotropic cylinder taking into account diffusion fluxes relaxation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {25--37},
     publisher = {mathdoc},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_1_a2/}
}
TY  - JOUR
AU  - N. A. Zverev
AU  - A. V. Zemskov
AU  - D. V. Tarlakovskii
TI  - Unsteady coupled elastic diffusion processes in an orthotropic cylinder taking into account diffusion fluxes relaxation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 25
EP  - 37
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_1_a2/
LA  - ru
ID  - IVM_2022_1_a2
ER  - 
%0 Journal Article
%A N. A. Zverev
%A A. V. Zemskov
%A D. V. Tarlakovskii
%T Unsteady coupled elastic diffusion processes in an orthotropic cylinder taking into account diffusion fluxes relaxation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 25-37
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_1_a2/
%G ru
%F IVM_2022_1_a2
N. A. Zverev; A. V. Zemskov; D. V. Tarlakovskii. Unsteady coupled elastic diffusion processes in an orthotropic cylinder taking into account diffusion fluxes relaxation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2022), pp. 25-37. http://geodesic.mathdoc.fr/item/IVM_2022_1_a2/