About the methods of biological resourse extraction, that provide the maximum average time benefit
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2022), pp. 12-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

Models of structured populations, consisting of individual species or divided in to age groups, are considered. In particular, it can be assumed that different types of fish are being harvested, between which there is a competition for food or habitats. The dynamics of the population, in the absence of exploitation, is given by a system of differential equations and at certain points of time, part of the resource is extracted from the population. Estimation of the average time benefit, which is equal to the limit of the average cost of the resource with an unlimited increase in the moments of withdrawal, is obtained. The method of resource extraction for the long-term collection mode is described, in which a certain part of the population is constantly preserved, which is necessary for its further recovery, and the maximum average time benefit is achieved. The results of the study are illustrated by examples of models of interaction between two types, such as competition and symbiosis.
Keywords: model of the population subject to harvesting, average time benefit
Mots-clés : optimal exploitation.
@article{IVM_2022_1_a1,
     author = {M. S. Woldeab and L. I. Rodina},
     title = {About the methods of biological resourse extraction, that provide the maximum average time benefit},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {12--24},
     publisher = {mathdoc},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_1_a1/}
}
TY  - JOUR
AU  - M. S. Woldeab
AU  - L. I. Rodina
TI  - About the methods of biological resourse extraction, that provide the maximum average time benefit
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 12
EP  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_1_a1/
LA  - ru
ID  - IVM_2022_1_a1
ER  - 
%0 Journal Article
%A M. S. Woldeab
%A L. I. Rodina
%T About the methods of biological resourse extraction, that provide the maximum average time benefit
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 12-24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_1_a1/
%G ru
%F IVM_2022_1_a1
M. S. Woldeab; L. I. Rodina. About the methods of biological resourse extraction, that provide the maximum average time benefit. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2022), pp. 12-24. http://geodesic.mathdoc.fr/item/IVM_2022_1_a1/

[1] Bainov D. D., “Population dynamics control in regard to minimizing the time necessary for the regeneration of a biomass taken away from the population”, Appl. Math. and Comput., 39:1 (1990), 37–48 | MR | Zbl

[2] Abakumov A. I., “Optimalnyi sbor urozhaya v populyatsiyakh $($modeli s nepreryvnym vremenem$)$”, Matem. modelirovanie, 5:11 (1993), 41–52 | MR | Zbl

[3] Zhdanova O. L., Frisman E. Ya., “Vliyanie optimalnogo promysla na kharakter dinamiki chislennosti i geneticheskogo sostava dvukhvozrastnoi populyatsii”, Izv. RAN. Ser. biologicheskaya, 6 (2013), 738–749

[4] Abakumov A. I., Izrailskii Yu. G., “Effekty promyslovogo vozdeistviya na rybnuyu populyatsiyu”, Matem. modelirovanie, 11:2 (2016), 191–204

[5] Neverova G. P., Abakumov A. I., Frisman E. Ya., “Vliyanie promyslovogo iz'yatiya na rezhimy dinamiki limitirovannoi populyatsii: rezultaty modelirovaniya i chislennogo issledovaniya”, Matem. biologiya i bioinform., 11:1 (2016), 1–13

[6] Neverova G. P., Abakumov A. I., Frisman E. Ya., “Rezhimy dinamiki limitirovannoi strukturirovannoi populyatsii pri izbiratelnom promysle”, Matem. biologiya i bioinform., 12:2 (2017), 327–342

[7] Egorova A. V., Rodina L. I., “Ob optimalnoi dobyche vozobnovlyaemogo resursa iz strukturirovannoi populyatsii”, Vestn. Udmurtsk. un-ta. Matem. mekhan. kompyut. nauki, 29:4 (2019), 501–517 | MR | Zbl

[8] Belyakov A. O., Davydov A. A., “Optimizatsiya effektivnosti tsiklicheskogo ispolzovaniya vozobnovlyaemogo resursa”, Tr. IMM UrO RAN, 22, no. 2, 2016, 38–46

[9] Davydov A. A., “Suschestvovanie optimalnykh statsionarnykh sostoyanii ekspluatiruemykh populyatsii s diffuziei”, Tr. MIAN, 310, 2020, 135–142 | Zbl

[10] Jensen F., Frost H., Abildtrup J., “Fisheries regulation: A survey of the literature on uncertainty, compliance behavior and asymmetric information”, Marine Policy, 21 (2017), 167–178 | DOI

[11] Kuzenkov O. A., Ryabova E. A., Matematicheskoe modelirovanie protsessov otbora, Izd-vo Nizhegorodsk. un-ta, Nizhnii Novgorod, 2007

[12] Rodina L. I., “Optimizatsiya srednei vremennoi vygody dlya veroyatnostnoi modeli populyatsii, podverzhennoi promyslu”, Vestn. Udmurtsk. un-ta. Matem. mekhan. kompyut. nauki, 28:1 (2018), 48–58 | MR | Zbl

[13] Riznichenko G. Yu., Lektsii po matematicheskim modelyam v biologii, v. 1, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2002