Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2022_1_a1, author = {M. S. Woldeab and L. I. Rodina}, title = {About the methods of biological resourse extraction, that provide the maximum average time benefit}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {12--24}, publisher = {mathdoc}, number = {1}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2022_1_a1/} }
TY - JOUR AU - M. S. Woldeab AU - L. I. Rodina TI - About the methods of biological resourse extraction, that provide the maximum average time benefit JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2022 SP - 12 EP - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2022_1_a1/ LA - ru ID - IVM_2022_1_a1 ER -
%0 Journal Article %A M. S. Woldeab %A L. I. Rodina %T About the methods of biological resourse extraction, that provide the maximum average time benefit %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2022 %P 12-24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2022_1_a1/ %G ru %F IVM_2022_1_a1
M. S. Woldeab; L. I. Rodina. About the methods of biological resourse extraction, that provide the maximum average time benefit. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2022), pp. 12-24. http://geodesic.mathdoc.fr/item/IVM_2022_1_a1/
[1] Bainov D. D., “Population dynamics control in regard to minimizing the time necessary for the regeneration of a biomass taken away from the population”, Appl. Math. and Comput., 39:1 (1990), 37–48 | MR | Zbl
[2] Abakumov A. I., “Optimalnyi sbor urozhaya v populyatsiyakh $($modeli s nepreryvnym vremenem$)$”, Matem. modelirovanie, 5:11 (1993), 41–52 | MR | Zbl
[3] Zhdanova O. L., Frisman E. Ya., “Vliyanie optimalnogo promysla na kharakter dinamiki chislennosti i geneticheskogo sostava dvukhvozrastnoi populyatsii”, Izv. RAN. Ser. biologicheskaya, 6 (2013), 738–749
[4] Abakumov A. I., Izrailskii Yu. G., “Effekty promyslovogo vozdeistviya na rybnuyu populyatsiyu”, Matem. modelirovanie, 11:2 (2016), 191–204
[5] Neverova G. P., Abakumov A. I., Frisman E. Ya., “Vliyanie promyslovogo iz'yatiya na rezhimy dinamiki limitirovannoi populyatsii: rezultaty modelirovaniya i chislennogo issledovaniya”, Matem. biologiya i bioinform., 11:1 (2016), 1–13
[6] Neverova G. P., Abakumov A. I., Frisman E. Ya., “Rezhimy dinamiki limitirovannoi strukturirovannoi populyatsii pri izbiratelnom promysle”, Matem. biologiya i bioinform., 12:2 (2017), 327–342
[7] Egorova A. V., Rodina L. I., “Ob optimalnoi dobyche vozobnovlyaemogo resursa iz strukturirovannoi populyatsii”, Vestn. Udmurtsk. un-ta. Matem. mekhan. kompyut. nauki, 29:4 (2019), 501–517 | MR | Zbl
[8] Belyakov A. O., Davydov A. A., “Optimizatsiya effektivnosti tsiklicheskogo ispolzovaniya vozobnovlyaemogo resursa”, Tr. IMM UrO RAN, 22, no. 2, 2016, 38–46
[9] Davydov A. A., “Suschestvovanie optimalnykh statsionarnykh sostoyanii ekspluatiruemykh populyatsii s diffuziei”, Tr. MIAN, 310, 2020, 135–142 | Zbl
[10] Jensen F., Frost H., Abildtrup J., “Fisheries regulation: A survey of the literature on uncertainty, compliance behavior and asymmetric information”, Marine Policy, 21 (2017), 167–178 | DOI
[11] Kuzenkov O. A., Ryabova E. A., Matematicheskoe modelirovanie protsessov otbora, Izd-vo Nizhegorodsk. un-ta, Nizhnii Novgorod, 2007
[12] Rodina L. I., “Optimizatsiya srednei vremennoi vygody dlya veroyatnostnoi modeli populyatsii, podverzhennoi promyslu”, Vestn. Udmurtsk. un-ta. Matem. mekhan. kompyut. nauki, 28:1 (2018), 48–58 | MR | Zbl
[13] Riznichenko G. Yu., Lektsii po matematicheskim modelyam v biologii, v. 1, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2002