Retractable and coretractable abelian groups
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2022), pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the theory of modules, an important role is played by the retractable and coretractable modules, which were introduced by Khuri (1979) and Amini, Ershad and Sharif (2009), respectively. In this paper, we study retractable and coretractable Abelian groups as modules over the ring of integers. In this case, the classical methods of the theory of Abelian groups are used, based on the injectivity and projectivity of divisible and free Abelian groups, respectively. This article provides complete descriptions of retractable and coretractable Abelian groups.
Keywords: abelian group
Mots-clés : retractable module, coretractable module, group homomorphism.
@article{IVM_2022_1_a0,
     author = {D. Yu. Artemov},
     title = {Retractable and coretractable abelian groups},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--11},
     publisher = {mathdoc},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_1_a0/}
}
TY  - JOUR
AU  - D. Yu. Artemov
TI  - Retractable and coretractable abelian groups
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 3
EP  - 11
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_1_a0/
LA  - ru
ID  - IVM_2022_1_a0
ER  - 
%0 Journal Article
%A D. Yu. Artemov
%T Retractable and coretractable abelian groups
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 3-11
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_1_a0/
%G ru
%F IVM_2022_1_a0
D. Yu. Artemov. Retractable and coretractable abelian groups. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2022), pp. 3-11. http://geodesic.mathdoc.fr/item/IVM_2022_1_a0/

[1] Khuri S. M., “Endomorphism rings and lattice isomorphisms”, J. Algebra, 56:2 (1979), 401–408 | DOI | MR | Zbl

[2] Khuri S. M., “Correspondence theorems for modules and their endomorphism rings”, J. Algebra, 122:2 (1989), 380–396 | DOI | MR | Zbl

[3] Khuri S. M., “Nonsingular retractable modules and their endomorphism rings”, Bull. Austral. Math. Soc., 43:1 (1991), 63–71 | DOI | MR | Zbl

[4] Rizvi S. T., Roman C. S., “Baer and quasi-Baer modules”, Comm. Algebra, 32:1 (2004), 103–123 | DOI | MR | Zbl

[5] Rizvi S. T., Roman C. S., “On $\mathscr{K}$-nonsingular modules and applications”, Comm. Algebra, 35:9 (2007), 2960–2982 | DOI | MR | Zbl

[6] Rizvi S. T., Roman C. S., “On direct sums of Baer modules”, J. Algebra, 321:2 (2009), 682–696 | DOI | MR | Zbl

[7] Zhou Z. P., “A lattice isomorphism theorem for nonsingular retractable modules”, Canad. Math. Bull., 37:1 (1994), 140–144 | DOI | MR | Zbl

[8] Haghany A., Vedadi M. R., “Study of semi-projective retractable modules”, Algebra Colloq., 14:3 (2007), 489–496 | DOI | MR | Zbl

[9] Abyzov A. N., Tuganbaev A. A., “Retraktabelnye i koretraktabelnye moduli”, Fundament. i prikl. matem., 19:2 (2014), 5–20 | MR

[10] Ecevit Ş., Koşan M.T., “On rings all of whose modules are retractable”, Arch. Math. (Brno), 45:1 (2009), 71–74 | MR | Zbl

[11] Haghany A., Karamzadeh O. A.S., Vedadi M. R., “Rings with all finitely generated modules retractable”, Bull. Iranian Math. Soc., 35:2 (2009), 37–45 | MR | Zbl

[12] Abyzov A. N., “O nekotorykh klassakh poluartinovykh kolets”, Sib. matem. zhurn., 53:5 (2012), 955–966 | MR

[13] Koşan M.T., Žemlička J., “Mod-retractable rings”, Comm. Algebra, 42:3 (2014), 998–1010 | DOI | MR

[14] Amini B., Ershad M., Sharif H., “Coretractable modules”, J. Aust. Math. Soc., 86:3 (2009), 289–304 | DOI | MR | Zbl

[15] Moniri Hamzekolaee A. R., “A generalization of coretractable modules”, J. Algebraic Syst., 5:2 (2018), 163–176 | MR | Zbl

[16] Ertaş N.O., Tütüncü D.K., Tribak R., “A variation of coretractable modules”, Bull. Malays. Math. Sci. Soc., 41:3 (2018), 1275–1291 | DOI | MR | Zbl

[17] Žemlička J., “Completely coretractable rings”, Bull. Iranian Math. Soc., 39:3 (2013), 523–528 | MR

[18] Fuks L., Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974

[19] Reid J. D., “A note on torsion-free abelian groups of infinite rank”, Proc. Amer. Math. Soc., 13:2 (1962), 222–225 | DOI | MR | Zbl

[20] Kulikov L. Ya., “K teorii abelevykh grupp proizvolnoi moschnosti”, Matem. sb., 16(58):2 (1945), 129–162 | Zbl

[21] Warfield R. B.Jr., “Homomorphisms and duality for torsion-free groups”, Math. Z., 107:3 (1968), 189–200 | DOI | MR | Zbl

[22] Sokolov E. V., “Ob otdelimosti podgrupp nilpotentnykh grupp v klasse konechnykh $\pi$-grupp”, Sib. matem. zhurn., 55:6 (2014), 1381–1390 | MR | Zbl

[23] Fomin A. A., Tsarev A. V., “Abelevy gruppy s konechnymi primarnymi faktorami”, Chebyshevsk. sb., 22:5 (2021), 400–406 | MR