Identification of the potential coefficient in the wave equation with incomplete data: a sentinel method
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2022), pp. 113-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider a wave equation with incomplete data, where we don't know the potential coefficient and the initial conditions. From observing the system in the boundary, we want to get information on the potential coefficient independently of the initial conditions. This can be obtained using the sentinel method of J. L. Lions, which is a functional insensitive to certain parameters. Shows us through the adjoint system that the existence of the sentinel is equivalent to an optimal control problem. We solve this optimal control problem by using the Hilbert Uniqueness Method (HUM).
Mots-clés : potential coefficient identification
Keywords: incomplete data, sentinel method, optimal control problem, Hilbert uniqueness method.
@article{IVM_2022_12_a9,
     author = {Billal Elhamza and Abdelhak Hafdallah},
     title = {Identification of the potential coefficient in the wave equation with incomplete data: a sentinel method},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {113--122},
     publisher = {mathdoc},
     number = {12},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_12_a9/}
}
TY  - JOUR
AU  - Billal Elhamza
AU  - Abdelhak Hafdallah
TI  - Identification of the potential coefficient in the wave equation with incomplete data: a sentinel method
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 113
EP  - 122
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_12_a9/
LA  - ru
ID  - IVM_2022_12_a9
ER  - 
%0 Journal Article
%A Billal Elhamza
%A Abdelhak Hafdallah
%T Identification of the potential coefficient in the wave equation with incomplete data: a sentinel method
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 113-122
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_12_a9/
%G ru
%F IVM_2022_12_a9
Billal Elhamza; Abdelhak Hafdallah. Identification of the potential coefficient in the wave equation with incomplete data: a sentinel method. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2022), pp. 113-122. http://geodesic.mathdoc.fr/item/IVM_2022_12_a9/

[1] Bellassoued M., Yamamoto M., Carleman Estimates and applications to inverse problems for hyperbolic systems, Springer Japan, Tokyo, 2017

[2] Yamamoto M., “Uniqueness and stability in multidimensional hyperbolic inverse problems”, J. Math. Pures Appl., 78:1 (1999), 65–98

[3] Rakesh R., “Reconstruction for an inverse problem for the wave equation with constant velocity”, Inv. Probl., 6:1 (1990), 91–98

[4] Khaidarov A., “Karlemanovsie otsenki i obratnye zadchi dlya giperbolicheskikh uravnenii vtorogo poryadka”, Matem. sb. (nov. ser.), 130(172):2(6), 265–274

[5] Puel J.P., Yamamoto M., “On a global estimate in a linear inverse hyperbolic problem”, Inv. Probl., 12:6 (1996), 995–1002

[6] Rakesh, Symes W.W., “Uniqueness for an inverse problem for the wave equation: Inverse problem for the wave equation”, Comm. Partial Diff. Equat., 13:1 (1988), 87–96

[7] Imanuvilov Yu.O., Yamamoto M., “Global Lipschitz stability in an inverse hyperbolic problem by interior observations”, Inv. Probl., 17:4 (2001), 717 pp.

[8] Imanuvilov Yu.O., Yamamoto M., “Global uniqueness and stability in determining coefficient of wave equations”, Comm. Partial Diff. Equat., 26:7–8 (2001), 1409–1425

[9] Lions J.L., Sentinelles pour les systèmes distribués à données incomplètes, Rech. Math. Appl., 21, Elsevier Masson, Paris

[10] Merabet A., Ayadi A., Omrane A., “Detection of pollution terms in nonlinear second order wave systems”, Int. J. Parallel, Emergent and Distributed Syst., 34:1 (2019), 13–20

[11] Kernévez J.P., The Sentinel Method and Its Application to Environmental Pollution Problems, CRC Mathematical Modelling Series, New York, CRC Press, 1997

[12] Molinet F., Simulation Numérique de Problémes d'Écosystèmes. Sentinelles pour la Détection d'Origine de Pollution, Doctoral dissertation, Paris 11

[13] Mosé R., Stoeckel M.E., Poulard C., Ackerer P., Lehmann F., “Transport parameters identification: application of the sentinel method”, Comput. Geosciences, 4:3 (2000), 251–273

[14] Chafia L., Abdelhamid A., Abdelhak H., “Identification problem of a fractional thermoelastic deformation system with incomplete data: A sentinel method”, Nonlinear Stud., 29:2 (2022), 399–410

[15] Amel B., Imad R., “Identification of the source term in Navier–Stokes system with incomplete data”, AIMS Math., 4:3 (2019), 516–526

[16] Miloudi Y., Nakoulima O., Omrane A., “On the instantaneous sentinels in pollution problems of incomplete data”, Inv. Probl. Sci. and Engineering, 17:4 (2009), 451–459

[17] Omrane A., “Some Aspects of the Sentinel Method for Pollution Problems”, Air Quality-Monitoring and Modeling, eds. Sunil Kumar, Rakesh Kumar, IntechOpen, 2012, 185–204

[18] Sandel S., Ayadi A., “Boundary sentinels for the resolution of a geometrical problem”, Turkish J. Math., 42:2 (2018), 548–556

[19] Lions J.L., Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués: Perturbations, v. 1, Rech. Math. Appl., 8, Masson, Paris, 1988

[20] Lions J.L., “Exact controllability, stabilization and perturbations for distributed systems”, SIAM Review, 30:1 (1988), 1–68

[21] Dehman B., Omrane A., “On the controllability under constraints on the control for hyperbolic equations”, Appl. Math. E-Notes, 10 (2010), 36–39

[22] Zuazua E., “Controllability and observability of partial differential equations: some results and open problems”, Handbook of differential equations: evolutionary differential equations, v. 3, Elsevier/North–Holland, Amsterdam, 2007, 527–621

[23] Komornik V., “A new method of exact controllability in short time and applications”, Ann. Facult. Sci. Toulouse: Math., 10:3 (1989), 415–464

[24] Komornik V., Exact Controllability and Stabilization: the Multiplier Method, Res. Appl. Math., 36, Wiley–Masson, Paris, 1994