Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2022_12_a9, author = {Billal Elhamza and Abdelhak Hafdallah}, title = {Identification of the potential coefficient in the wave equation with incomplete data: a sentinel method}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {113--122}, publisher = {mathdoc}, number = {12}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2022_12_a9/} }
TY - JOUR AU - Billal Elhamza AU - Abdelhak Hafdallah TI - Identification of the potential coefficient in the wave equation with incomplete data: a sentinel method JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2022 SP - 113 EP - 122 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2022_12_a9/ LA - ru ID - IVM_2022_12_a9 ER -
%0 Journal Article %A Billal Elhamza %A Abdelhak Hafdallah %T Identification of the potential coefficient in the wave equation with incomplete data: a sentinel method %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2022 %P 113-122 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2022_12_a9/ %G ru %F IVM_2022_12_a9
Billal Elhamza; Abdelhak Hafdallah. Identification of the potential coefficient in the wave equation with incomplete data: a sentinel method. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2022), pp. 113-122. http://geodesic.mathdoc.fr/item/IVM_2022_12_a9/
[1] Bellassoued M., Yamamoto M., Carleman Estimates and applications to inverse problems for hyperbolic systems, Springer Japan, Tokyo, 2017
[2] Yamamoto M., “Uniqueness and stability in multidimensional hyperbolic inverse problems”, J. Math. Pures Appl., 78:1 (1999), 65–98
[3] Rakesh R., “Reconstruction for an inverse problem for the wave equation with constant velocity”, Inv. Probl., 6:1 (1990), 91–98
[4] Khaidarov A., “Karlemanovsie otsenki i obratnye zadchi dlya giperbolicheskikh uravnenii vtorogo poryadka”, Matem. sb. (nov. ser.), 130(172):2(6), 265–274
[5] Puel J.P., Yamamoto M., “On a global estimate in a linear inverse hyperbolic problem”, Inv. Probl., 12:6 (1996), 995–1002
[6] Rakesh, Symes W.W., “Uniqueness for an inverse problem for the wave equation: Inverse problem for the wave equation”, Comm. Partial Diff. Equat., 13:1 (1988), 87–96
[7] Imanuvilov Yu.O., Yamamoto M., “Global Lipschitz stability in an inverse hyperbolic problem by interior observations”, Inv. Probl., 17:4 (2001), 717 pp.
[8] Imanuvilov Yu.O., Yamamoto M., “Global uniqueness and stability in determining coefficient of wave equations”, Comm. Partial Diff. Equat., 26:7–8 (2001), 1409–1425
[9] Lions J.L., Sentinelles pour les systèmes distribués à données incomplètes, Rech. Math. Appl., 21, Elsevier Masson, Paris
[10] Merabet A., Ayadi A., Omrane A., “Detection of pollution terms in nonlinear second order wave systems”, Int. J. Parallel, Emergent and Distributed Syst., 34:1 (2019), 13–20
[11] Kernévez J.P., The Sentinel Method and Its Application to Environmental Pollution Problems, CRC Mathematical Modelling Series, New York, CRC Press, 1997
[12] Molinet F., Simulation Numérique de Problémes d'Écosystèmes. Sentinelles pour la Détection d'Origine de Pollution, Doctoral dissertation, Paris 11
[13] Mosé R., Stoeckel M.E., Poulard C., Ackerer P., Lehmann F., “Transport parameters identification: application of the sentinel method”, Comput. Geosciences, 4:3 (2000), 251–273
[14] Chafia L., Abdelhamid A., Abdelhak H., “Identification problem of a fractional thermoelastic deformation system with incomplete data: A sentinel method”, Nonlinear Stud., 29:2 (2022), 399–410
[15] Amel B., Imad R., “Identification of the source term in Navier–Stokes system with incomplete data”, AIMS Math., 4:3 (2019), 516–526
[16] Miloudi Y., Nakoulima O., Omrane A., “On the instantaneous sentinels in pollution problems of incomplete data”, Inv. Probl. Sci. and Engineering, 17:4 (2009), 451–459
[17] Omrane A., “Some Aspects of the Sentinel Method for Pollution Problems”, Air Quality-Monitoring and Modeling, eds. Sunil Kumar, Rakesh Kumar, IntechOpen, 2012, 185–204
[18] Sandel S., Ayadi A., “Boundary sentinels for the resolution of a geometrical problem”, Turkish J. Math., 42:2 (2018), 548–556
[19] Lions J.L., Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués: Perturbations, v. 1, Rech. Math. Appl., 8, Masson, Paris, 1988
[20] Lions J.L., “Exact controllability, stabilization and perturbations for distributed systems”, SIAM Review, 30:1 (1988), 1–68
[21] Dehman B., Omrane A., “On the controllability under constraints on the control for hyperbolic equations”, Appl. Math. E-Notes, 10 (2010), 36–39
[22] Zuazua E., “Controllability and observability of partial differential equations: some results and open problems”, Handbook of differential equations: evolutionary differential equations, v. 3, Elsevier/North–Holland, Amsterdam, 2007, 527–621
[23] Komornik V., “A new method of exact controllability in short time and applications”, Ann. Facult. Sci. Toulouse: Math., 10:3 (1989), 415–464
[24] Komornik V., Exact Controllability and Stabilization: the Multiplier Method, Res. Appl. Math., 36, Wiley–Masson, Paris, 1994