The Markoff theory and the commutator subgroup $SL(2,Z)'$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2022), pp. 101-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

The commutator subgroup $SL(2,Z)'$ plays a particular role in the Markoff theory since every Markoff number is $1/3$ of the trace of same elements of $SL(2,Z)'$. The latter is a free group with two generators. We give an exhaustive description of the possible pairs of generators of $SL(2,Z)'$, including important new results.
Keywords: commutator subgroup, special linear group, Markoff number
Mots-clés : Markoff triple, $3$-matrix.
@article{IVM_2022_12_a8,
     author = {Paul Schmutz Schaller},
     title = {The {Markoff} theory and the commutator subgroup $SL(2,Z)'$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {101--112},
     publisher = {mathdoc},
     number = {12},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_12_a8/}
}
TY  - JOUR
AU  - Paul Schmutz Schaller
TI  - The Markoff theory and the commutator subgroup $SL(2,Z)'$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 101
EP  - 112
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_12_a8/
LA  - ru
ID  - IVM_2022_12_a8
ER  - 
%0 Journal Article
%A Paul Schmutz Schaller
%T The Markoff theory and the commutator subgroup $SL(2,Z)'$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 101-112
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_12_a8/
%G ru
%F IVM_2022_12_a8
Paul Schmutz Schaller. The Markoff theory and the commutator subgroup $SL(2,Z)'$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2022), pp. 101-112. http://geodesic.mathdoc.fr/item/IVM_2022_12_a8/

[1] Markoff A., “Sur les formes quadratiques binaires indéfinies”, Math. Ann., 15 (1879), 381–406

[2] Markoff A., “Sur les formes quadratiques binaires indéfinis $($Sécond mémoire$)$”, Math. Ann., 17 (1880), 379–399

[3] Bachmann P., Die Arithmetik der quadratischen Formen, B.G. Teubner, Leipzig – Berlin, 1923

[4] Dickson L.E., Studies in the Theory of Numbers, Chicago Univ. Press, Chicago, 1930

[5] Cusick T.W., Flahive M.E., The Markoff and Lagrange Spectra, AMS Math. Surveys Monographs, 30, AMS, Providence, Rhode Island, 1989

[6] Perrine S., La Théorie de Markoff et ses Développement, Tessier Ashpool, 2002

[7] Aigner M., Markov's Theorem and $100$ Years of the Uniqueness Conjecture, Springer–Verlag, 2013

[8] Reutenauer C., From Christoffel Words to Markoff Numbers, Oxford Univ. Press, Oxford, 2019

[9] Paul Schmutz Schaller, Markoff Theory, the Free Group of Rank $2$, and Matrix Groups in PSL$(2$,R$)$ (to appear)

[10] Cohn H., “Approach to Markoff's minimal forms through modular functions”, Ann. Math., 61:2 (1955), 1–12

[11] Gorshkov D.S., “Geometrii Lobachevskogo v svyazi s nekotorymi voprosami arifmetiki”, Zap. nauchn. sem. LOMI, 67, 1977, 39–85

[12] Fricke R., “Über die theorie der automorphen Modulgruppen”, Nachr. Ges. Wiss. Göttingen, 1896, 91–101

[13] Nielsen J., Collected Mathematical Papers, Birkhäuser, Boston–Basel–Stuttgart, 1986

[14] Perrine S., “L'interprétation matricielle de la théorie de Markoff classique”, IJMS, 32 (2002), 193–262

[15] Newman M., “The structure of some subgroups of the modular group”, Illinois J. Math., 6:3 (1962), 480–487