Keywords: fully inert subgroup, projectively inert subgroup, uniformly projectively inert subgroup.
@article{IVM_2022_12_a7,
author = {A. R. Chekhlov},
title = {Fully inert subgroups of completely decomposable groups, having homogeneous components of the final rank},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {91--100},
year = {2022},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2022_12_a7/}
}
TY - JOUR AU - A. R. Chekhlov TI - Fully inert subgroups of completely decomposable groups, having homogeneous components of the final rank JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2022 SP - 91 EP - 100 IS - 12 UR - http://geodesic.mathdoc.fr/item/IVM_2022_12_a7/ LA - ru ID - IVM_2022_12_a7 ER -
A. R. Chekhlov. Fully inert subgroups of completely decomposable groups, having homogeneous components of the final rank. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2022), pp. 91-100. http://geodesic.mathdoc.fr/item/IVM_2022_12_a7/
[1] Fuks L., Beskonechnye abelevy gruppy, v. 2, Mir, M., 1977
[2] Dardano U., Dikranjan D., Rinauro S., “Inertial properties in groups”, Int. J. Group theory, 7:3 (2018), 17–62
[3] Dardano U., Dikranjan D., Salce L., “On uniformly fully inert subgroups of abelian groups”, Topological Algebra and Appl., 8:1 (2020), 5–27
[4] Goldsmith B., Salce L., “Fully inert subgroups of torsion-complete $p$-groups”, J. Algebra, 555 (2020), 406–424
[5] Dikranjan D., Bruno A., Salce L., Virili S., “Fully inert subgroups of divisible Abelian groups”, J. Group Theory, 16:6 (2013), 915–939
[6] Chekhlov A.R., Ivanets O.V., “O proektivno inertnykh podgruppakh vpolne razlozhimykh grupp konechnogo ranga”, Vestn. Tomsk. gos. un-ta, Ser. Matem. i mekh., 67 (2020), 63–68
[7] Chekhlov A.R., “O vpolne inertnykh podgruppakh vpolne razlozhimykh grupp”, Matem. zametki, 101:2 (2017), 302–312
[8] Chekhlov A.R., Danchev P.V., Goldsmith B., “On the socles of fully inert subgroups of Abelian $p$-groups”, Mediterranean J. Math., 18:3 (2021), 122–141