Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2022_12_a10, author = {Sh. T. Ishmukhametov and N. A. Antonov and B. G. Mubarakov and G. G. Rubtsova}, title = {On a conbined primality test}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {123--129}, publisher = {mathdoc}, number = {12}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2022_12_a10/} }
TY - JOUR AU - Sh. T. Ishmukhametov AU - N. A. Antonov AU - B. G. Mubarakov AU - G. G. Rubtsova TI - On a conbined primality test JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2022 SP - 123 EP - 129 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2022_12_a10/ LA - ru ID - IVM_2022_12_a10 ER -
Sh. T. Ishmukhametov; N. A. Antonov; B. G. Mubarakov; G. G. Rubtsova. On a conbined primality test. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2022), pp. 123-129. http://geodesic.mathdoc.fr/item/IVM_2022_12_a10/
[1] Alford W.R., Granville A., Pomerance C., “There are Infinitely Many Carmichael Numbers”, Ann. Math., 139:3 (1994), 703–722
[2] Crandall R., Pomerance C., Prime Numbers: A Computational Perspertive, Springer–Verlag, Berlin, 2005
[3] Ishmukhametov Sh.T., Rubtsova R.G., Khusnutdinov R.R., “Ob odnom teste prostoty naturalnykh chisel”, Izv. vuzov. Matem., 2022, no. 2, 83–87
[4] Ishmukhametov S., Antonov N., Mubarakov B., A new primality test constructed as a combination of Miller–Rabin and Lucas algorithms, MDPI Special Edition (to appear)
[5] Computational complexity of mathematical operations, Wikipedia, https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations