Controlled $g$-atomic subspaces for operators in Hilbert spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2022), pp. 17-33
Voir la notice de l'article provenant de la source Math-Net.Ru
Controlled $g$-atomic subspace for a bounded linear operator is being presented and a characterization has been given. We give an example of controlled $K$-$g$-fusion frame. We construct a new controlled $K$-$g$-fusion frame for the Hilbert space $H \oplus X$ using the controlled $K$-$g$-fusion frames of the Hilbert spaces $H$ and $X$. Several useful resolutions of the identity operator on a Hilbert space using the theory of controlled $g$-fusion frames have been discussed. We introduce the frame operator for a pair of controlled $g$-fusion Bessel sequences.
Keywords:
$K$-$g$-fusion frame, $g$-atomic subspace, frame operator, controlled $g$-fusion frame, controlled $K$-$g$-fusion frame.
@article{IVM_2022_12_a1,
author = {Prasenjit Ghosh and T. K. Samanta},
title = {Controlled $g$-atomic subspaces for operators in {Hilbert} spaces},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {17--33},
publisher = {mathdoc},
number = {12},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2022_12_a1/}
}
TY - JOUR AU - Prasenjit Ghosh AU - T. K. Samanta TI - Controlled $g$-atomic subspaces for operators in Hilbert spaces JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2022 SP - 17 EP - 33 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2022_12_a1/ LA - ru ID - IVM_2022_12_a1 ER -
Prasenjit Ghosh; T. K. Samanta. Controlled $g$-atomic subspaces for operators in Hilbert spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2022), pp. 17-33. http://geodesic.mathdoc.fr/item/IVM_2022_12_a1/