Controlled $g$-atomic subspaces for operators in Hilbert spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2022), pp. 17-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

Controlled $g$-atomic subspace for a bounded linear operator is being presented and a characterization has been given. We give an example of controlled $K$-$g$-fusion frame. We construct a new controlled $K$-$g$-fusion frame for the Hilbert space $H \oplus X$ using the controlled $K$-$g$-fusion frames of the Hilbert spaces $H$ and $X$. Several useful resolutions of the identity operator on a Hilbert space using the theory of controlled $g$-fusion frames have been discussed. We introduce the frame operator for a pair of controlled $g$-fusion Bessel sequences.
Keywords: $K$-$g$-fusion frame, $g$-atomic subspace, frame operator, controlled $g$-fusion frame, controlled $K$-$g$-fusion frame.
@article{IVM_2022_12_a1,
     author = {Prasenjit Ghosh and T. K. Samanta},
     title = {Controlled $g$-atomic subspaces for operators in {Hilbert} spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {17--33},
     publisher = {mathdoc},
     number = {12},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_12_a1/}
}
TY  - JOUR
AU  - Prasenjit Ghosh
AU  - T. K. Samanta
TI  - Controlled $g$-atomic subspaces for operators in Hilbert spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 17
EP  - 33
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_12_a1/
LA  - ru
ID  - IVM_2022_12_a1
ER  - 
%0 Journal Article
%A Prasenjit Ghosh
%A T. K. Samanta
%T Controlled $g$-atomic subspaces for operators in Hilbert spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 17-33
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_12_a1/
%G ru
%F IVM_2022_12_a1
Prasenjit Ghosh; T. K. Samanta. Controlled $g$-atomic subspaces for operators in Hilbert spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2022), pp. 17-33. http://geodesic.mathdoc.fr/item/IVM_2022_12_a1/

[1] Duffin R.J., Schaeffer A.C., “A class of nonharmonic Fourier series”, Trans. Amer. Math. Soc., 72 (1952), 341–366

[2] Daubechies I., Grossmann A., Meyer Y.J., “Painless nonorthogonal expansions”, J. Math. Phys., 27:5 (1986), 1271–1283

[3] Christensen O., An Introduction to Frames and Riesz Bases, Birkhäuser, 2003

[4] Gǎvruta L., “Frames for operator”, Appl. Comput. Harmon. Anal., 32:1 (2012), 139–144

[5] Casazza P., Kutyniok G., “Frames of subspaces”, Contemporary Math., 345, AMS, 2004, 87–114

[6] Sun W., “$G$-frames and $G$-Riesz bases”, J. Math. Anal. and Appl., 322:1 (2006), 437–452

[7] Ghosh P., Samanta T.K., “Generalized fusion frame in tensor product of Hilbert spaces”, J. Indian Math. Soc.

[8] Sadri V., Rahimlou Gh., Ahmadi R., Zarghami Farfar R., Generalized fusion frames in Hilbert spaces, 2018, arXiv: 1806.03598v1 [math.FA]

[9] Ahmadi R., Rahimlou G., Sadri V., Zarghami Farfar R., “Constructions of $K$-$g$ fusion frames and their duals in Hilbert spaces”, Bull. Transilvania Univ. Brasov, 13(62):1 (2020), 17–32

[10] Ghosh P., Samanta T.K., “Stability of dual g-fusion frames in Hilbert spaces”, Meth. Funct. Anal. and Topology, 26:3 (2020), 227–240

[11] Ghosh P., Samanta T.K., “Generalized atomic subspaces for operators in Hilbert spaces”, Math. Bohemica, 147:3 (2022), 325–345

[12] Bogdanova I., Vandergheynst P., Antoine J.-P., Jacques L., Morrvidone M., “Stereographic wavelet frames on the sphere”, Appl. Comput. Harmon. Anal., 19:2 (2005), 223–252

[13] Balazs P., Antoine J.-P., Gryboś A., “Weighted and controlled frames: mutual relationship and first numerical properties”, Int. J. Wavelets, Multiresolution Info. Proc., 8:1 (2010), 109–132

[14] Nouri M., Rahimi A., Najafizadeh Sh., “Controlled $K$-frames in Hilbert spaces”, Int. J. Anal. Appl., 4:2 (2015), 39–50

[15] Rahimi A., Fereydooni A., “Controlled $G$-frames and their $G$-multipliers in Hilbert spaces”, Analele Stiintifice Ale Univ. Ovidius Constanta, Ser. Matem., 21:2 (2013), 223–236

[16] Khosravi A., Musazadeh K., “Controlled fusion frames”, Meth. Funct. Anal. and Topology, 18:3, 256–265

[17] Ghosh P., Samanta T.K., “Controlled generalized fusion frame in tensor product of Hilbert spaces”, Armen. J. Math., 13:13 (2021), 1–18

[18] Shakoory H., Ahamadi R., Behzadi N., Nami S., $(C,C^{\prime})$-controlled $g$-fusion frames, 2018 (to appear)

[19] Rahimlou G., Sadri V., Ahmadi R., “Construction of controlled $K$-$g$-fusion frame $2$ in Hilbert spaces”, U. P. B. Sci. Bull., Ser. A, 82:1 (2020)

[20] Douglas R.G., “On majorization, factorization, and range inclusion of operators on Hilbert space”, Proc. Amer. Math. Soc., 17 (1966), 413–415

[21] Kreyzig E., Introductory Functional Analysis with Applications, Wiley, New York, 1989

[22] Gǎvruta P., “On the duality of fusion frames”, J. Math. Anal. and Appl., 333:2 (2007), 871–879

[23] Ghosh P., Samanta T.K., “Construction of fusion frame in Cartesian product of two Hilbert spaces”, Gulf J. Math., 11:2 (2021), 53–64