Classical solutions for the coupled system gKdV equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2022), pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we investigate the coupled system of gKdV equations. A new topological approach is applied to prove the existence of at least one classical solution and at least two nonnegative classical solutions. The arguments are based upon recent theoretical results.
Keywords: coupled system gKdV equations, classical solution.
Mots-clés : existence
@article{IVM_2022_12_a0,
     author = {Svetlin G. Georgiev and Aissa Boukarou and Khaled Zennir},
     title = {Classical solutions for the coupled system {gKdV} equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--16},
     publisher = {mathdoc},
     number = {12},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_12_a0/}
}
TY  - JOUR
AU  - Svetlin G. Georgiev
AU  - Aissa Boukarou
AU  - Khaled Zennir
TI  - Classical solutions for the coupled system gKdV equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 3
EP  - 16
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_12_a0/
LA  - ru
ID  - IVM_2022_12_a0
ER  - 
%0 Journal Article
%A Svetlin G. Georgiev
%A Aissa Boukarou
%A Khaled Zennir
%T Classical solutions for the coupled system gKdV equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 3-16
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_12_a0/
%G ru
%F IVM_2022_12_a0
Svetlin G. Georgiev; Aissa Boukarou; Khaled Zennir. Classical solutions for the coupled system gKdV equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2022), pp. 3-16. http://geodesic.mathdoc.fr/item/IVM_2022_12_a0/

[1] Ablowitz M.J., Kaup D.J., Newell A.C., Segur H., “Nonlinear evolution equations of physical significance”, Phys. Rev. Lett., 31:2 (1973), 125–127

[2] Alarcon E.A., Angulo J., Montenegro J.F., “Stability and instability of solitary waves for a nonlinear dispersive system”, Nonlinear Anal., 36:9 (1999), 1015–1035

[3] Panthee M., Scialom M., “On the Cauchy problem for a coupled system of KdV equations: critical case”, Adv. Diff. Equat., 13:1–2 (2008), 1–26

[4] Montenegro J.F., Sistemas de Equações não Lineares. Estudo Local, Global e Estabilidade de Ondas Solitárias, Ph. D. thesis, IMPA, Rio de Janeiro, Brasil, 1995

[5] Carvajal X., Panthee M., “Sharp well-posedness for a coupled system of mKdV-type equations”, J. Evol. Equat., 19:4 (2019), 1167–1197

[6] Angulo J., Bona J.L., Linares F., Scialom M., “Scaling, stability and singularities for nonlinear dispersive wave equations: the critical case”, Nonlinearity, 15:3 (2002), 759–786

[7] Hakkaev S., Kirchev K., “Stability of solitary wave solutions of nonlinear dispersive system in a critical case”, Nonlinear Anal. TMA, 67:10 (2007), 2890–2899

[8] Carvajal X., Esquivel L., Santos R., “On local well-posedness and ill-posedness results for a coupled system of mkdv type equations”, Discrete Continuous Dynamical Syst., 41:6 (2021), 2699–2723

[9] Majda A.J., Biello J.A., “The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves”, J. Atmospheric Sci., 60:15 (2003), 1809–1821

[10] Oh T., “Diophantine conditions in well-posedness theory of coupled KdV-type systems: local theory”, Int. Math. Res. Not., 2009:18 (2009), 3516–3556

[11] Banas J., Goebel K., Measures of Noncompactness in Banach Spaces, Lect. Notes Pure and Appl. Math., 60, Marcel Dekker, Inc., New York, 1980

[12] Drábek P., Milota J., Methods in Nonlinear Analysis: Applications to Differential Equations, Birkhäuser, 2007

[13] Djebali S., Mebarki K., “Fixed point index theory for perturbation of expansive mappings by $k$-set contractions”, Top. Meth. Nonlin. Anal., 54:2 A (2019), 613–640

[14] Polyanin A.D., Manzhirov A.V., Handbook of integral equations, CRC Press, 1998