Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2022_12_a0, author = {Svetlin G. Georgiev and Aissa Boukarou and Khaled Zennir}, title = {Classical solutions for the coupled system {gKdV} equations}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--16}, publisher = {mathdoc}, number = {12}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2022_12_a0/} }
TY - JOUR AU - Svetlin G. Georgiev AU - Aissa Boukarou AU - Khaled Zennir TI - Classical solutions for the coupled system gKdV equations JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2022 SP - 3 EP - 16 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2022_12_a0/ LA - ru ID - IVM_2022_12_a0 ER -
Svetlin G. Georgiev; Aissa Boukarou; Khaled Zennir. Classical solutions for the coupled system gKdV equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2022), pp. 3-16. http://geodesic.mathdoc.fr/item/IVM_2022_12_a0/
[1] Ablowitz M.J., Kaup D.J., Newell A.C., Segur H., “Nonlinear evolution equations of physical significance”, Phys. Rev. Lett., 31:2 (1973), 125–127
[2] Alarcon E.A., Angulo J., Montenegro J.F., “Stability and instability of solitary waves for a nonlinear dispersive system”, Nonlinear Anal., 36:9 (1999), 1015–1035
[3] Panthee M., Scialom M., “On the Cauchy problem for a coupled system of KdV equations: critical case”, Adv. Diff. Equat., 13:1–2 (2008), 1–26
[4] Montenegro J.F., Sistemas de Equações não Lineares. Estudo Local, Global e Estabilidade de Ondas Solitárias, Ph. D. thesis, IMPA, Rio de Janeiro, Brasil, 1995
[5] Carvajal X., Panthee M., “Sharp well-posedness for a coupled system of mKdV-type equations”, J. Evol. Equat., 19:4 (2019), 1167–1197
[6] Angulo J., Bona J.L., Linares F., Scialom M., “Scaling, stability and singularities for nonlinear dispersive wave equations: the critical case”, Nonlinearity, 15:3 (2002), 759–786
[7] Hakkaev S., Kirchev K., “Stability of solitary wave solutions of nonlinear dispersive system in a critical case”, Nonlinear Anal. TMA, 67:10 (2007), 2890–2899
[8] Carvajal X., Esquivel L., Santos R., “On local well-posedness and ill-posedness results for a coupled system of mkdv type equations”, Discrete Continuous Dynamical Syst., 41:6 (2021), 2699–2723
[9] Majda A.J., Biello J.A., “The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves”, J. Atmospheric Sci., 60:15 (2003), 1809–1821
[10] Oh T., “Diophantine conditions in well-posedness theory of coupled KdV-type systems: local theory”, Int. Math. Res. Not., 2009:18 (2009), 3516–3556
[11] Banas J., Goebel K., Measures of Noncompactness in Banach Spaces, Lect. Notes Pure and Appl. Math., 60, Marcel Dekker, Inc., New York, 1980
[12] Drábek P., Milota J., Methods in Nonlinear Analysis: Applications to Differential Equations, Birkhäuser, 2007
[13] Djebali S., Mebarki K., “Fixed point index theory for perturbation of expansive mappings by $k$-set contractions”, Top. Meth. Nonlin. Anal., 54:2 A (2019), 613–640
[14] Polyanin A.D., Manzhirov A.V., Handbook of integral equations, CRC Press, 1998