The geometry of one-dimensional and spatial Hardy type inequalities
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2022), pp. 52-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

The proofs of many hardy-type inequalities are based on one-dimensional inequalities. The difficulties that come from the domains of integration are implicitly reflected in the one-dimensional inequalities on the interval used to substantiate the spatial analogs. One-dimensional inequalities are the analytical basis for solving geometric problems. The paper provides a brief overview of the results in this direction. An attempt is made to systematically present the theory of Hardy-type inequalities with additional terms involving the geometric characteristics of the regions, for example, such as the volume, diameter, inner radius, or the maximum conformal modulus of the region.
Keywords: Hardy's inequality, additional term, diameter, inner radius, one-dimensional inequality, spatial inequality, Bessel function, Poincaré metric.
Mots-clés : volume, maximal conformal modulus, convex domain
@article{IVM_2022_11_a4,
     author = {R. G. Nasibullin},
     title = {The geometry of one-dimensional and spatial {Hardy} type inequalities},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {52--88},
     publisher = {mathdoc},
     number = {11},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_11_a4/}
}
TY  - JOUR
AU  - R. G. Nasibullin
TI  - The geometry of one-dimensional and spatial Hardy type inequalities
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 52
EP  - 88
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_11_a4/
LA  - ru
ID  - IVM_2022_11_a4
ER  - 
%0 Journal Article
%A R. G. Nasibullin
%T The geometry of one-dimensional and spatial Hardy type inequalities
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 52-88
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_11_a4/
%G ru
%F IVM_2022_11_a4
R. G. Nasibullin. The geometry of one-dimensional and spatial Hardy type inequalities. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2022), pp. 52-88. http://geodesic.mathdoc.fr/item/IVM_2022_11_a4/

[1] Levin V. I., “O neravenstvakh. II. Ob odnom klasse integralnykh neravenstv”, Matem. sb., 4(46):2 (1938), 309–324

[2] Avkhadiev F. G., Wirths K.-J., “Unified Poincaré and Hardy inequalities with sharp constants for convex domains”, Z. Angew. Math. Mech., 87:8–9 (2007), 632–642 | DOI | MR

[3] Avkhadiev F. G., Wirths K.-J., “Sharp Hardy-type inequalities with Lamb's constants”, Bull. Belg. Math. Soc. Simon Stevin, 18:4 (2011), 723–736 | DOI | MR

[4] Avkhadiev F. G., “Geometricheskoe opisanie oblastei, dlya kotorykh konstanta Khardi ravna 1/4”, Izv. RAN. Ser. matem., 78:5 (2014), 3–26 | MR

[5] Avkhadiev F. G., “Selected results and open problems on Hardy–Rellich and Poincare–Friedrichs inequalities”, Anal. and Math. Phys., 11:3 (2021) | DOI | MR

[6] Avkhadiev F. G., “Teoremy vlozheniya, svyazannye s zhestkostyu krucheniya i osnovnoi chastotoi”, Izv. RAN. Ser. matem., 86:1 (2022), 3–35 | MR

[7] Avkhadiev F. G., “Reshenie obobschennoi zadachi Sen–Venana”, Matem. sb., 189:12 (1998), 3–12

[8] Balinsky A. A., Evans W. D., Lewis R. T., The Analysis and Geometry of Hardy's Inequality, Springer, Heidelberg - New York- Dordrecht - London, 2015 | MR

[9] Ruzhansky M., Suragan D., Hardy inequalities on homogeneous groups, Progress in Math., 327, Birkhauser, 2019 | DOI | MR

[10] Ruzhansky M., Sabitbek B., Suragan D., “Geometric Hardy and Hardy-Sobolev inequalities on Heisenberg groups”, Bull. Math. Sci., 10:2 (2020) | DOI | MR

[11] Hoffmann-Ostenhof M., Hoffmann-Ostenhof T., Laptev A., “A geometrical version of Hardy's inequality”, J. Funct. Anal., 189:2 (2002), 539–548 | DOI | MR

[12] Evans W. D., Lewis R. T., “Hardy and Rellich inequalities with remainders”, J. Math. Inequal., 1:4 (2007), 473–490 | DOI | MR

[13] Davies E. B., “The Hardy constant”, Quart. J. Math. Oxford (2), 46:4 (1995), 417–431 | DOI | MR

[14] Davies E. B., Spectral theory and differential operators, Cambridge stud. in advanced math., 42, Cambridge Univ. Press, Cambridge, 1995 | MR

[15] Brezis H., Marcus M., “Hardy's inequality revisited”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25:1–2 (1997), 217–237 | MR

[16] Matskewich T., Sobolevskii P. E., “The best possible constant in a generalized Hardy's inequality for convex domains in $R^n$”, Nonlinear Anal., 28:9 (1997), 1601–1610 | DOI | MR

[17] Marcus M., Mitzel V. J., Pinchover Y., “On the best constant for Hardy's inequality in $R^n$”, Trans. Amer. Math. Soc., 350:8 (1998), 3237–3255 | DOI | MR

[18] Avkhadiev F. G., “Integralnye neravenstva v oblastyakh giperbolicheskogo tipa i ikh primeneniya”, Matem. sb., 206:12 (2015), 3–28

[19] Gesztesy F., Pang M. M.H., Stanfill J., “Bessel-Type Operators and a Refinement of Hardy's Inequality”, Operator Theory to Orthogonal Polynomials, Combinatorics, and Number Theory, Operator Theory: Advances and Appl., 285, 2021 | MR

[20] Gesztesy F., Pang M. M.H., Stanfill J., Bessel-Type Operators and a Refinement of Hardy's Inequality, 2021, arXiv: 2102.00106v5 | MR

[21] Avkhadiev F. G., “Neravenstva tipa Khardi v ploskikh i prostranstvennykh otkrytykh mnozhestvakh”, Funktsionalnye prostranstva, teoriya priblizhenii, nelineinyi analiz, Tr. MIAN, 255, Nauka, MAIK «Nauka/Interperiodika», M., 2006, 8–18

[22] Dubinskii Yu. A., “Ob odnom neravenstve tipa Khardi i ego prilozheniyakh”, Teoriya funktsii i differentsialnye uravneniya, Tr. MIAN, 269, 2010, 112–132

[23] Prokhorov D. V., Stepanov V. D., Ushakova E. P., Integralnye operatory Khardi–Steklova, Sovr. probl. matem., 22, MIAN, M., 2016, 186 pp. | MR

[24] Tidblom J., “A geometrical version of Hardy's inequality for $ W^{1,p}_0(\Omega)$”, Proc. Amer. Math. Soc., 132:8 (2004), 2265–2271 | DOI | MR

[25] Tidblom J., “A Hardy inequality in the half-space”, J. Funct. Anal., 221:2 (2005), 482–495 | DOI | MR

[26] Avkhadiev F. G., “Hardy type inequalities in higher dimensions with explicit estimate of constants”, Lobachevskii J. Math., 21 (2006), 3–31 | MR

[27] Pommerenke Ch., “Uniformly perfect sets and the Poincaré metric”, Arch. Math., 32 (1979), 192–199 | DOI | MR

[28] Ancona A., “On strong barriers and an inequality of Hardy for domains in $\mathbb{R}^n$”, J. London Math. Soc., s2–34:2 (1986), 274–290 | DOI | MR

[29] Laptev A., Sobolev A. V., “Hardy inequalities for simply connected planar domains”, Amer. Math. Soc. Transl. Ser. 2, 225 (2008), 133–140 | MR

[30] Makarov R. V., Nasibullin R. G., Shaymardanova G. R., “Weighted Hardy Type Inequalities and Parametric Lamb Equation”, Lobachevskii J. Math., 41:11 (2020), 2198–2210 | DOI | MR

[31] Avkhadiev F. G., Wirths K.-J., “On the best constants for the Brezis-Marcus inequalities in balls”, J. Math. Anal. and Appl., 396:2 (2012), 473–480 | DOI | MR

[32] Barbatis G., Filippas S., Tertikas A., “Series expansion for $L^p$ Hardy inequalities”, Indiana Univ. Math., 52:1 (2003), 171–190 | DOI | MR

[33] Beesack P. R., “Hardy's inequality and its extensions”, Pacific J. Math., 11:1 (1961), 39–61 | DOI | MR

[34] Boyd D. W., “Best constants in a class of integral inequalities”, Pacific J. Math., 30:2 (1969), 367–383 | DOI | MR

[35] Talenti D. G., “Osservazioni sopra una classe di disuguaglianze”, Rend. Sem. Mat. Fiz. Milano, 39 (1969), 171–185 | DOI | MR

[36] Tomaselli G., “A class of inequalities”, Boll. Un. Mat. Ital., 2 (1969), 622–631 | MR

[37] Muckenhoupt B., “Hardy's inequality with weights”, Stud. Math., 44:1 (1972), 31–38 | DOI | MR

[38] Sinnamon G., Stepanov V. D., “The weighted Hardy inequality: new proofs and the case $p = 1$”, J. London Math. Soc., 54:1 (1996), 89–101 | DOI | MR

[39] Persson L. E., Stepanov V. D., “Weighted Integral Inequalities with the Geometric Mean Operator”, J. Inequal. and Appl., 7:5 (2002), 727–746 | MR

[40] Kufner A., Persson L. E., Weighted inequalities of Hardy type, World Scientific, New Jersey-London-Singapore-Hong Kong, 2003 | MR

[41] Nasibullin R. G., “Sharp conformally invariant Hardy-type inequalities with remainders”, Eurasian Math. J., 12:3 (2021), 46–56 | DOI | MR

[42] Nasibullin R. G., “Hardy and Rellich Type Inequalities with Remainders”, Czechoslovak Math. J., 72:1 (2021), 87–110 | DOI | MR

[43] Makarov R. V., Nasibullin R. G., “Hardy type inequalities and parametric Lamb equation”, Indagationes Math., 31:4 (2020), 632–649 | DOI | MR

[44] Makarov R. V., Nasibullin R. G., “Neravenstva Khardi s dopolnitelnymi slagaemymi i uravneniya tipa Lemba”, Sib. matem. zhurn., 61:6 (2020), 1377–1397 | MR

[45] Nasibullin R. G., “Brezis–Marcus type inequalities with Lamb constant”, Sib. Èlektron. Mat. Izv., 16 (2019), 449–464 | DOI | MR

[46] Nasibullin R. G., “Multidimensional Hardy Type Inequalities with Remainders”, Lobachevskii J. Math., 40:9 (2019), 1383–1396 | DOI | MR

[47] Nasibullin R. G., “Tochnye integralnye neravenstva tipa Khardi s vesami, zavisyaschimi ot funktsii Besselya”, Ufimsk. matem. zhurn., 9:1 (2017), 89–97 | MR

[48] Nasibullin R. G., “Hardy type inequalities with weights dependent on the bessel functions”, Lobachevskii J. Math., 37:3 (2016), 274–283 | DOI | MR

[49] Burenkov V. I., Senouci A., Tararykova T. V., “Hardy-type inequality for $0 p 1$ and hypodecreasing functions”, Eurasian math. j., 1:3 (2010), 27–42 | MR

[50] Burenkov V. I., Function spaces. Main integral inequalities related to $L_p$-spaces, Peoples' Friendship Univ., Moscow, 1989

[51] Burenkov V. I., “On the exact constant in the Hardy inequality with $0 p 1$ for monotone”, Proc. Steklov Inst. Math., 194:4 (1993), 59–63 | MR

[52] Ruzhansky M., Suragan D., Hardy inequalities on homogeneous groups, Birkhäuser, 2019 | MR

[53] Hardy G. H., Littlewood J. E., Polya G., Inequalities, Cambridge Univ. Press, Cambridge, 1973 | MR

[54] Wannebo A., A remark on the history of Hardy inequalities in domains, 2004, arXiv: math/0401255

[55] Nečas J., “Sur une méthod pou résondre les équations aux dérivées partielle du type elliptique, voisine de la variationell”, Ann. Scoula Norm. Sup. Pisa, 16:3 (1962), 305–326 | MR

[56] Kufner A., Weighted Sobolev Spaces, John Wiley and Sons Inc., New York, 1985 | MR

[57] Opic B., Kufner A., Hardy-type inequalities, Longman Scientific and Technical, Harlow, 1990 | MR

[58] Kinnunen J., Korte R., “Characterizations for the Hardy Inequality”, Around the Research of Vladimir Maz'ya I, Springer, 2010, 239–254 | DOI | MR

[59] Miklyukov V. M., Vuorinen M. K., “Hardy's Inequality for W0 1, p-Functions on Riemannian Manifolds”, Proceedings American Math. Soc., 127:9 (1999), 2745–2754 | DOI | MR

[60] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo Leningradsk. un-ta, L., 1985 | MR

[61] Lewis J. L., “Uniformly fat sets”, Trans. Amer. Math. Soc., 308:1 (1988), 177–196 | DOI | MR

[62] Wannebo A., “Hardy Inequalities”, Proc. Amer. Math. Soc., 109:1 (1988), 85–95 | DOI | MR

[63] Shum D. T., “On integral inequalities related to Hardy's”, Canada. Math. Bull., 14:2 (1997), 225–230 | DOI | MR

[64] Avkhadiev F., Laptev A., “Hardy Inequalities for Nonconvex Domains”, Around the Research of Vladimir Maz'ya I, International Mathematical Series, 11, ed. Laptev A., Springer, New York, 2010 | MR

[65] Filippas S., Maz'ya V., Tertikas A., “On a question of Brezis and Marcus”, Calc. Var., 25:4 (2006), 491–501 | DOI | MR

[66] Psaradakis G., “$L_1$ Hardy Inequalities with Weights”, J. Geom. Anal., 23 (2013), 1703–1728 | DOI | MR

[67] Fernández J. L., “Domains with Strong Barrier”, Revista Matem. Iberoamericana, 5 (1989), 47–65 | MR

[68] Fernández J. L., Rodríguez J. M., “The exponent of convergence of Riemann surfaces, bass Riemann surfaces”, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 15 (1990), 165–182 | DOI | MR

[69] Avkhadiev F. G., “Konformno invariantnye neravenstva v oblastyakh evklidova prostranstva”, Izv. RAN. Ser. matem., 83:5 (2019), 3–26 | MR

[70] Avkhadiev F. G., Nasibullin R. G., Shafigullin I. K., “Neravenstva tipa Khardi so stepennymi i logarifmicheskimi vesami v oblastyakh evklidova prostranstva”, Izv. vuzov. Matem., 2011, no. 9, 90–94

[71] Avkhadiev F. G., “Zadacha Brezisa—Markusa i ee obobscheniya”, Kompleksnyi analiz, Itogi nauki i tekhn. Ser. Sovrem. matem. i ee pril. Temat. obz., 153, VINITI RAN, M., 2018, 3–12

[72] Hadwiger H., Vorlesungen öber Inhalt, Oberfläsche und Isoperimetrie, Springer Verlag, 1957 | MR

[73] Alvino A., Volpicelli R., Ferone A., “Sharp Hardy inequalities in the half space with trace remainder term”, Nonlinear Analysis: Theory, Methods and Appl., 75:14 (2012), 5466–5472 | DOI | MR

[74] Nguyen V. H., “Some trace Hardy type inequalities and trace Hardy-Sobolev-Maz'ya type inequalities”, J. Funct. Anal., 270:11 (2016), 4117–4151 | DOI | MR

[75] Tzirakis K., “Improving interpolated Hardy and trace Hardy inequalities on bounded domains”, Nonlinear Anal.: Theory, Methods and Appl., 127 (2015), 17–34 | DOI | MR

[76] Lewis R. T., Junfang Li, Yanyan Li, “A geometric characterization of a sharp Hardy inequality”, J. Funct. Anal., 262:11 (2012), 3159–3185 | DOI | MR

[77] Avkhadiev F. G., Wirths K.-J., “Weighted Hardy Inequalities with Sharp Constants”, Lobachevskii J. Math., 31:1 (2010), 1–7 | DOI | MR

[78] Avkhadiev F. G., Nasibullin R. G., “Neravenstva tipa Khardi v proizvolnykh oblastyakh s konechnym vnutrennim radiusom”, Sib. matem. zhurn., 55:2 (2014), 239–250 | MR

[79] Watson G. N., A threatise on the theory of the Bessel Functions, Cambridge Univ. Press, Cambridge, 1966 | MR

[80] Lamb H., “Note on the induction of electric currents in a cylinder placed across the lines of magnetic force”, Proc. Lond. Math. Soc., XV:2 (1884), 270–274 | MR

[81] Beesack P. R., Das K. M., “Extensions of Opial's inequality”, Pacific J. Math., 26:2 (1968), 215–232 | DOI | MR

[82] Brown R. C., Hinton D. B., “Opial's inequality and o scillation of 2nd order equations”, Proc. Amer. Math. Soc., 125:4 (1997), 1123–1129 | DOI | MR

[83] Bandle C., Isoperimetric inequalities and applications, Pitman Adv. Publ. Program, Boston-London-Melbourne, 1980 | MR

[84] Hersch J., “Sur la fréquence fondamentale d'une membrande vibrante; évaluation par défaut et principe de maximum”, J. Math. Phys. Appl., 11 (1960), 387–412 | MR

[85] Ahlfors L. V., Conformal invariants, Topics in Geometric Function Theory, McGraw Hill, 1973 | MR

[86] Avkhadiev F. G., Wirths K.-J., Schwarz-Pick Type Inequalities, Birkhäuser Verlag, Basel-Boston-Berlin, 2009 | MR

[87] Sullivan D., “Related aspects of positivity in Riemannian geometry”, J. Diff. Geom., 25 (1987), 327–351 | MR