Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2022_11_a0, author = {B. A. Babajanov and D. O. Atajonov}, title = {On the integration of the periodical {Camassa--Holm} equation with an integral type source}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--13}, publisher = {mathdoc}, number = {11}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2022_11_a0/} }
TY - JOUR AU - B. A. Babajanov AU - D. O. Atajonov TI - On the integration of the periodical Camassa--Holm equation with an integral type source JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2022 SP - 3 EP - 13 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2022_11_a0/ LA - ru ID - IVM_2022_11_a0 ER -
%0 Journal Article %A B. A. Babajanov %A D. O. Atajonov %T On the integration of the periodical Camassa--Holm equation with an integral type source %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2022 %P 3-13 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2022_11_a0/ %G ru %F IVM_2022_11_a0
B. A. Babajanov; D. O. Atajonov. On the integration of the periodical Camassa--Holm equation with an integral type source. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2022), pp. 3-13. http://geodesic.mathdoc.fr/item/IVM_2022_11_a0/
[1] Camassa R. and Holm D., “An integrable shallow water equation with peaked solitons”, Phys. Rev. Lett., 71:11 (1993), 1661–1664 | DOI | MR
[2] Johnson R., “Camassa–Holm Korteweg-de Vries and related models for water waves”, J. Fluid Mech., 455 (2002), 63–82 | DOI | MR
[3] Johnson R., “The Camassa–Holm equation for water waves moving over a shear flow”, Fluid Dynam. Res., 33:1 (2003), 97–111 | DOI | MR
[4] Johnson R., “The classical problem of water waves: a reservoir of integrable and nearly-integrable equations”, J. Nonlinear Math. Phys., 10:4 (2003), 72–92 | DOI | MR
[5] Alber M. S., Camassa R., Holm D. D. and Marsden J. E., “The geometry of peaked solitons and billiard solutions of a class of integrable PDE's”, Lett. Math. Phys., 32 (1994), 137–151 | DOI | MR
[6] Constantin A., “Existence of permanent and breaking waves for a shallow water equation: a geometric approach”, Ann. Inst. Fourier (Grenoble), 50:2 (2000), 321–362 | DOI | MR
[7] Misiolek G., “A shallow water equation as a geodesic flow on the Bott-Virasoro group”, J. Geom. Phys., 24:3 (1998), 203–208 | DOI | MR
[8] Alber M. S., Camassa R., Holm D. D. and Marsden J. E., “On the link between umbilic geodesics and soliton solutions of nonlinear PDE's”, Proc. Roy. Soc., 450 (1995), 677–692 | MR
[9] Constantin A., Gerdjikov V. S. and Ivanov R. I., “Inverse scattering transform for the Camassa–Holm equation”, Inverse Probl., 22:6 (2006), 2197–2207 | DOI | MR
[10] Gesztesy F. and Holden H., “Real-valued algebro-geometric solutions of the Camassa–Holm hierarchy”, Phil. Trans. R. Soc. A, 366 (2008), 1025–1054 | DOI | MR
[11] Novikov V., “Generalisations of the Camassa–Holm equation”, J. Phys.: A Math. and Theoretical, 42:34 (2009), 1–11 | DOI | MR
[12] Rodriguez-Blanco G., “On the Cauchy Problem for the Camassa–Holm Equation”, Nonlinear Anal., 46:3 (2001), 309–327 | DOI | MR
[13] Yergaliyeva G., Myrzakul T., Nugmanova G., Myrzakulov R., “Camassa–Holm and Myrzakulov-CIV Equations with Self-Consistent Sources: Geometry and Peakon Solutions”, Geometry, Integrability and Quantization, 21 (2020), 310–319 | DOI
[14] Ivanov R. I., “Equations of the Camassa–Holm Hierarchy”, TMF, 160:1 (2009), 93–101 | DOI | MR
[15] Xinhui Lu, Aiyong Chen, “Tongjie Deng Orbital Stability of Peakons for a Generalized Camassa–Holm Equation”, J. Appl. Math. Phys., 7:10 (2019), 2200–2211 | DOI
[16] Guo Z., Liu X., and Qu C., “Stability of Peakons for the Generalized Modified Camassa–Holm Equation”, J. Diff. Equat., 266 (2019), 7749–7779 | DOI | MR
[17] Yin J. L. and Fan X. H., “Orbital Stability of Floating Periodic Peakons for the Camassa–Holm Equation”, Nonlinear Anal., 11:5 (2010), 4021–4026 | DOI | MR
[18] Korotayev E., “Inverse Spectral Problem for the Periodic Camassa–Holm Equation”, J. Nonlinear Math. Phys., 11:4 (2004), 499–507 | DOI | MR
[19] Constantin A. and Mckean H. P., “A shallow water equation on the circle”, Comm. Pure Appl. Math., 52:8 (1999), 949–982 | 3.0.CO;2-D class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[20] Constantin A., “On the spectral problem for the periodic Camassa–Holm equation”, J. Math. Anal. Appl., 210:1 (1997), 215–230 | DOI | MR
[21] Constantin A., “A general-weighted Sturm–Liouville problem”, Ann. Scuola Norm. Sup. Pisa, 24:4 (1997), 767–782 | MR
[22] Constantin A., “On the inverse spectral problem for the Camassa–Holm equation”, J. Funct. Anal., 155 (1998), 352–363 | DOI | MR
[23] Melnikov V. K., “A direct method for deriving a multisoliton solution for the problem of interaction of waves on the x,y plane”, Comm. Math. Phys., 112:4 (1987), 639–652 | DOI | MR
[24] Melnikov V. K., “Integration method of the Korteweg-de Vries equation with a self-consistent source”, Phys. Lett. A, 133:9 (1998), 493–496 | DOI | MR
[25] Melnikov V. K., “Integration of the nonlinear Schröedinger equation with a self-consistent source”, Comm. Math. Phys., 137:2 (1991), 359–381 | DOI | MR
[26] Melnikov V. K., “Integration of the Korteweg-de Vries equation with a source”, Inverse Probl., 6:2 (1990), 233–246 | DOI | MR
[27] Leon J. and Latifi A., “Solution of an initial-boundary value problem for coupled nonlinear waves”, J. Phys. A: Math. Gen., 23:8 (1990), 1385–1403 | DOI | MR
[28] Claude C., Leon J., Latifi A., “Nonliear resonant scattering and plasma instability: an integrable model”, J. Math. Phys., 32:12 (1991), 3321–3330 | DOI | MR
[29] Huang Y., Yao Y., Zeng Y., “On Camassa-Holm equation with self-consistent sources and its solutions”, Comm. in Theor. Phys., 53:3 (2010), 403–412 | DOI | MR
[30] Baltaeva I. I., Urazboev G. U., “About the Camassa–Holm equation with a self-consistent source”, Ufa Math. J., 3:3 (2011), 10–18 | MR
[31] Zeng Y., Ma W.X., and Runliang Lin, “Integration of the soliton hierarchy with self-consistent sources”, J. Math. Phys., 41 (2000), 5453–5488 | DOI | MR
[32] Zeng Y. B., Shao Y. J., and Xue W. M., “Negaton and positon solutions of the soliton equation with self-consistent sources”, J. Phys. A: Math. Gen., 36 (2003), 5035–5043 | DOI | MR
[33] Zhang D. J., Chen D. Y., “The N-soliton solutions of the sine-Gordon equation with self-consistent sources”, Phys. A: Stat. Mech. Appl. (3–4), 321:2 (2003), 467–481 | DOI | MR
[34] Grinevich P. G. and Taimanov I. A., “Spectral conservation laws for periodic nonlinear equations of the Melni-kov type”, Geometry, topology, and mathematical physics S. P. Novikov's seminar: 2006–2007, Amer. Math. Soc. Transl. Ser. 2, 224, eds. V.M. Buchstaber, I.M. Krichever, 2008, 125–138 | MR
[35] Yakhshimuratov A. B., “The nonlinear Schrödinger equation with a self-consistent source in the class of periodic functions”, Math. Phys. Anal. Geom., 14:2 (2011), 153–169 | DOI | MR
[36] Yakhshimuratov A. B., Babajanov B. A., “Integration of equation of Kaup system kind with a self-consistent source in the class of periodic functions”, Ufimsk. matem. zhurn., 12:1 (2020), 104–114 | MR
[37] Khasanov A. B. and Yakhshimuratov A. B., “The Korteweg-de Vries equation with a self-consistent source in the class of periodic functions”, Theor. Math. Phys., 164:2 (2010), 1008–1015 | DOI | MR
[38] Babajanov B. A., Fechkan M. and Urazbaev G., “On the periodic Toda lattice with self-consistent source”, Comm. Nonlinear Sci. Numer. Simul., 22 (2015), 379–388 | DOI | MR
[39] Babajanov B. A., Fechkan M., and Urazbaev G., “On the periodic Toda lattice hierarchy with an integral source”, Comm. Nonlinear Sci. Numer. Simul., 52 (2017), 110–123 | DOI | MR
[40] Babajanov B. A., Khasanov A. B., “Periodic Toda chain with an integral source”, Theoret. Math. Phys., 184 (2015), 1114–1128 | DOI | MR
[41] Khasanov A. B., Khoitmetov U. A., “Integrirovanie obschego nagruzhennogo uravneniya Kortevega-de Friza s integralnym istochnikom v klasse bystroubyvaayuschikh kompleksnoznachnykh funktsii”, Izv. vuzov. Matem., 2021, no. 7, 52–66
[42] Yakhshimuratov A., Kriecherbauer T., Babajanov B., “On the construction and integration of a hierarchy for the Kaup system with a self-consistent source in the class of periodic functions”, J. Math. Phys., Anal., Geometry, 17:2 (2021), 233–257 | MR