On the integration of the periodical Camassa--Holm equation with an integral type source
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2022), pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we study the integration of the periodical Camassa–Holm equation with an integral type source. Physically, sources arise in solitary waves with a variable speed and lead to a variety of dynamics of physical models. With regard to their applications, these kinds of systems are usually used to describe interactions between different solitary waves. We show that the periodical Camassa–Holm equation with an integral type source is also an important theoretical model as it is a completely integrable system. We will get a representation for the solution of periodical Camassa–Holm equation with an integral type source in the framework of the inverse spectral problem for a weighted Shturm–Liouville operator.
Mots-clés : Camassa–Holm equation
Keywords: integral source, trace formulas, inverse spectral problem, weighted Sturm–Liouville operator.
@article{IVM_2022_11_a0,
     author = {B. A. Babajanov and D. O. Atajonov},
     title = {On the integration of the periodical {Camassa--Holm} equation with an integral type source},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--13},
     publisher = {mathdoc},
     number = {11},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_11_a0/}
}
TY  - JOUR
AU  - B. A. Babajanov
AU  - D. O. Atajonov
TI  - On the integration of the periodical Camassa--Holm equation with an integral type source
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 3
EP  - 13
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_11_a0/
LA  - ru
ID  - IVM_2022_11_a0
ER  - 
%0 Journal Article
%A B. A. Babajanov
%A D. O. Atajonov
%T On the integration of the periodical Camassa--Holm equation with an integral type source
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 3-13
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_11_a0/
%G ru
%F IVM_2022_11_a0
B. A. Babajanov; D. O. Atajonov. On the integration of the periodical Camassa--Holm equation with an integral type source. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2022), pp. 3-13. http://geodesic.mathdoc.fr/item/IVM_2022_11_a0/

[1] Camassa R. and Holm D., “An integrable shallow water equation with peaked solitons”, Phys. Rev. Lett., 71:11 (1993), 1661–1664 | DOI | MR

[2] Johnson R., “Camassa–Holm Korteweg-de Vries and related models for water waves”, J. Fluid Mech., 455 (2002), 63–82 | DOI | MR

[3] Johnson R., “The Camassa–Holm equation for water waves moving over a shear flow”, Fluid Dynam. Res., 33:1 (2003), 97–111 | DOI | MR

[4] Johnson R., “The classical problem of water waves: a reservoir of integrable and nearly-integrable equations”, J. Nonlinear Math. Phys., 10:4 (2003), 72–92 | DOI | MR

[5] Alber M. S., Camassa R., Holm D. D. and Marsden J. E., “The geometry of peaked solitons and billiard solutions of a class of integrable PDE's”, Lett. Math. Phys., 32 (1994), 137–151 | DOI | MR

[6] Constantin A., “Existence of permanent and breaking waves for a shallow water equation: a geometric approach”, Ann. Inst. Fourier (Grenoble), 50:2 (2000), 321–362 | DOI | MR

[7] Misiolek G., “A shallow water equation as a geodesic flow on the Bott-Virasoro group”, J. Geom. Phys., 24:3 (1998), 203–208 | DOI | MR

[8] Alber M. S., Camassa R., Holm D. D. and Marsden J. E., “On the link between umbilic geodesics and soliton solutions of nonlinear PDE's”, Proc. Roy. Soc., 450 (1995), 677–692 | MR

[9] Constantin A., Gerdjikov V. S. and Ivanov R. I., “Inverse scattering transform for the Camassa–Holm equation”, Inverse Probl., 22:6 (2006), 2197–2207 | DOI | MR

[10] Gesztesy F. and Holden H., “Real-valued algebro-geometric solutions of the Camassa–Holm hierarchy”, Phil. Trans. R. Soc. A, 366 (2008), 1025–1054 | DOI | MR

[11] Novikov V., “Generalisations of the Camassa–Holm equation”, J. Phys.: A Math. and Theoretical, 42:34 (2009), 1–11 | DOI | MR

[12] Rodriguez-Blanco G., “On the Cauchy Problem for the Camassa–Holm Equation”, Nonlinear Anal., 46:3 (2001), 309–327 | DOI | MR

[13] Yergaliyeva G., Myrzakul T., Nugmanova G., Myrzakulov R., “Camassa–Holm and Myrzakulov-CIV Equations with Self-Consistent Sources: Geometry and Peakon Solutions”, Geometry, Integrability and Quantization, 21 (2020), 310–319 | DOI

[14] Ivanov R. I., “Equations of the Camassa–Holm Hierarchy”, TMF, 160:1 (2009), 93–101 | DOI | MR

[15] Xinhui Lu, Aiyong Chen, “Tongjie Deng Orbital Stability of Peakons for a Generalized Camassa–Holm Equation”, J. Appl. Math. Phys., 7:10 (2019), 2200–2211 | DOI

[16] Guo Z., Liu X., and Qu C., “Stability of Peakons for the Generalized Modified Camassa–Holm Equation”, J. Diff. Equat., 266 (2019), 7749–7779 | DOI | MR

[17] Yin J. L. and Fan X. H., “Orbital Stability of Floating Periodic Peakons for the Camassa–Holm Equation”, Nonlinear Anal., 11:5 (2010), 4021–4026 | DOI | MR

[18] Korotayev E., “Inverse Spectral Problem for the Periodic Camassa–Holm Equation”, J. Nonlinear Math. Phys., 11:4 (2004), 499–507 | DOI | MR

[19] Constantin A. and Mckean H. P., “A shallow water equation on the circle”, Comm. Pure Appl. Math., 52:8 (1999), 949–982 | 3.0.CO;2-D class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[20] Constantin A., “On the spectral problem for the periodic Camassa–Holm equation”, J. Math. Anal. Appl., 210:1 (1997), 215–230 | DOI | MR

[21] Constantin A., “A general-weighted Sturm–Liouville problem”, Ann. Scuola Norm. Sup. Pisa, 24:4 (1997), 767–782 | MR

[22] Constantin A., “On the inverse spectral problem for the Camassa–Holm equation”, J. Funct. Anal., 155 (1998), 352–363 | DOI | MR

[23] Melnikov V. K., “A direct method for deriving a multisoliton solution for the problem of interaction of waves on the x,y plane”, Comm. Math. Phys., 112:4 (1987), 639–652 | DOI | MR

[24] Melnikov V. K., “Integration method of the Korteweg-de Vries equation with a self-consistent source”, Phys. Lett. A, 133:9 (1998), 493–496 | DOI | MR

[25] Melnikov V. K., “Integration of the nonlinear Schröedinger equation with a self-consistent source”, Comm. Math. Phys., 137:2 (1991), 359–381 | DOI | MR

[26] Melnikov V. K., “Integration of the Korteweg-de Vries equation with a source”, Inverse Probl., 6:2 (1990), 233–246 | DOI | MR

[27] Leon J. and Latifi A., “Solution of an initial-boundary value problem for coupled nonlinear waves”, J. Phys. A: Math. Gen., 23:8 (1990), 1385–1403 | DOI | MR

[28] Claude C., Leon J., Latifi A., “Nonliear resonant scattering and plasma instability: an integrable model”, J. Math. Phys., 32:12 (1991), 3321–3330 | DOI | MR

[29] Huang Y., Yao Y., Zeng Y., “On Camassa-Holm equation with self-consistent sources and its solutions”, Comm. in Theor. Phys., 53:3 (2010), 403–412 | DOI | MR

[30] Baltaeva I. I., Urazboev G. U., “About the Camassa–Holm equation with a self-consistent source”, Ufa Math. J., 3:3 (2011), 10–18 | MR

[31] Zeng Y., Ma W.X., and Runliang Lin, “Integration of the soliton hierarchy with self-consistent sources”, J. Math. Phys., 41 (2000), 5453–5488 | DOI | MR

[32] Zeng Y. B., Shao Y. J., and Xue W. M., “Negaton and positon solutions of the soliton equation with self-consistent sources”, J. Phys. A: Math. Gen., 36 (2003), 5035–5043 | DOI | MR

[33] Zhang D. J., Chen D. Y., “The N-soliton solutions of the sine-Gordon equation with self-consistent sources”, Phys. A: Stat. Mech. Appl. (3–4), 321:2 (2003), 467–481 | DOI | MR

[34] Grinevich P. G. and Taimanov I. A., “Spectral conservation laws for periodic nonlinear equations of the Melni-kov type”, Geometry, topology, and mathematical physics S. P. Novikov's seminar: 2006–2007, Amer. Math. Soc. Transl. Ser. 2, 224, eds. V.M. Buchstaber, I.M. Krichever, 2008, 125–138 | MR

[35] Yakhshimuratov A. B., “The nonlinear Schrödinger equation with a self-consistent source in the class of periodic functions”, Math. Phys. Anal. Geom., 14:2 (2011), 153–169 | DOI | MR

[36] Yakhshimuratov A. B., Babajanov B. A., “Integration of equation of Kaup system kind with a self-consistent source in the class of periodic functions”, Ufimsk. matem. zhurn., 12:1 (2020), 104–114 | MR

[37] Khasanov A. B. and Yakhshimuratov A. B., “The Korteweg-de Vries equation with a self-consistent source in the class of periodic functions”, Theor. Math. Phys., 164:2 (2010), 1008–1015 | DOI | MR

[38] Babajanov B. A., Fechkan M. and Urazbaev G., “On the periodic Toda lattice with self-consistent source”, Comm. Nonlinear Sci. Numer. Simul., 22 (2015), 379–388 | DOI | MR

[39] Babajanov B. A., Fechkan M., and Urazbaev G., “On the periodic Toda lattice hierarchy with an integral source”, Comm. Nonlinear Sci. Numer. Simul., 52 (2017), 110–123 | DOI | MR

[40] Babajanov B. A., Khasanov A. B., “Periodic Toda chain with an integral source”, Theoret. Math. Phys., 184 (2015), 1114–1128 | DOI | MR

[41] Khasanov A. B., Khoitmetov U. A., “Integrirovanie obschego nagruzhennogo uravneniya Kortevega-de Friza s integralnym istochnikom v klasse bystroubyvaayuschikh kompleksnoznachnykh funktsii”, Izv. vuzov. Matem., 2021, no. 7, 52–66

[42] Yakhshimuratov A., Kriecherbauer T., Babajanov B., “On the construction and integration of a hierarchy for the Kaup system with a self-consistent source in the class of periodic functions”, J. Math. Phys., Anal., Geometry, 17:2 (2021), 233–257 | MR