@article{IVM_2022_10_a6,
author = {M. M. Arslanov},
title = {Completeness criterions for a class of reducubilities},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {73--78},
year = {2022},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2022_10_a6/}
}
M. M. Arslanov. Completeness criterions for a class of reducubilities. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2022), pp. 73-78. http://geodesic.mathdoc.fr/item/IVM_2022_10_a6/
[1] Soare R. I., Recursively enumerable sets and degrees. A study of computable functions and computably generated sets, Perspectives in math. logic, Springer-Verlag, Berlin–Heidelberg–N.Y., etc., 1987 | DOI | MR
[2] Arslanov M. M., “Truth table complete computably enumerable sets”, Computability and Models, eds. S.B. Cooper, S.S. Goncharov, Kluwer Academic/Plenum Publishers, New York–Boston–Dordrecht–London–M., 2002, 1–10 | MR
[3] Arslanov M. M., “Polnota v arifmeticheskoi ierarkhii i nepodvizhnye tochki”, Algebra i logika, 28:1 (1989), 3–17 | MR
[4] Arslanov M. M., “O nekotorykh obobscheniyakh teoremy o nepodvizhnoi tochke”, Izv. vuzov. Matem., 1981, no. 5, 9–16 | Zbl
[5] Solovev V. D., “Nekotorye obobscheniya ponyatii svodimosti i kreativnosti”, Izv. vuzov. Matem., 1976, no. 3, 65–72 | Zbl
[6] Batyrshin I. I., “Quasi-completeness and functions without fixed-points”, Math. Log. Quart., 52:6 (2006), 595–601 | DOI | MR | Zbl
[7] Bulitko V. K., “O sposobakh kharakterizatsii polnykh mnozhestv”, Izvestiya AN SSSR, Seriya Matematicheskaya, 55:2 (1991), 227–253 | Zbl
[8] Degtev A. N., Rekursivno perechislimye mnozhestva i svodimosti tablichnogo tipa, Nauka, Fizmatlit, M., 1998
[9] Bulitko V. K., “Pismo v redaktsiyu”, Izv. AN SSSR, Ser. matem., 56:4 (1992), 907 | Zbl
[10] Myhill J., “Creative sets”, Z. Math. Logik Grundl. Math., 1955, no. 1, 97–108 | DOI | MR | Zbl