Computability and universal determinability of negatively representative models
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2022), pp. 22-32
Voir la notice de l'article provenant de la source Math-Net.Ru
It has been established that a negative representable model is computable if and only if its standard enrichment with constants is isomorphically embedded in any model of a suitable computable enumerated set of universal sentences implemented in this model. It is shown that for computable enumerable sets of existential sentences this statement is incorrect.
Keywords:
computable, negative and positive representations of models, standard enrichment, negative and positive diagram, universal and existential determinability.
@article{IVM_2022_10_a2,
author = {R. N. Dadazhanov},
title = {Computability and universal determinability of negatively representative models},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {22--32},
publisher = {mathdoc},
number = {10},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2022_10_a2/}
}
TY - JOUR AU - R. N. Dadazhanov TI - Computability and universal determinability of negatively representative models JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2022 SP - 22 EP - 32 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2022_10_a2/ LA - ru ID - IVM_2022_10_a2 ER -
R. N. Dadazhanov. Computability and universal determinability of negatively representative models. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2022), pp. 22-32. http://geodesic.mathdoc.fr/item/IVM_2022_10_a2/