Induced homeomorphism and Atsuji hyperspaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2022), pp. 11-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given uniformly homeomorphic metric spaces $X$ and $Y$, it is proved that the hyperspaces $C(X)$ and $C(Y)$ are uniformly homeomorphic, where $C(X)$ denotes the collection of all nonempty closed subsets of $X$, and is endowed with Hausdorff distance. Gerald Beer has proved that the hyperspace $C(X)$ is Atsuji when $X$ is either compact or uniformly discrete. An Atsuji space is a generalization of compact metric spaces as well as of uniformly discrete spaces. In this article, we investigate the space $C(X)$ when $X$ is Atsuji, and a class of Atsuji subspaces of $C(X)$ is obtained. Using the obtained results, some fixed point results for continuous maps on Atsuji spaces are obtained.
Keywords: metric space, homeomorphism, Atsuji space, multivalued map.
Mots-clés : Hausdorff distance
@article{IVM_2022_10_a1,
     author = {A. K. Gupta and S. Mukherjee},
     title = {Induced homeomorphism and {Atsuji} hyperspaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {11--21},
     publisher = {mathdoc},
     number = {10},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_10_a1/}
}
TY  - JOUR
AU  - A. K. Gupta
AU  - S. Mukherjee
TI  - Induced homeomorphism and Atsuji hyperspaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 11
EP  - 21
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_10_a1/
LA  - ru
ID  - IVM_2022_10_a1
ER  - 
%0 Journal Article
%A A. K. Gupta
%A S. Mukherjee
%T Induced homeomorphism and Atsuji hyperspaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 11-21
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_10_a1/
%G ru
%F IVM_2022_10_a1
A. K. Gupta; S. Mukherjee. Induced homeomorphism and Atsuji hyperspaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2022), pp. 11-21. http://geodesic.mathdoc.fr/item/IVM_2022_10_a1/

[1] Lucchetti R., Pasquale A., “A new approach to a hyperspace theory”, J. Convex Anal., 1 (1994), 173–193 | MR | Zbl

[2] Beer G., “More about metric spaces on which continuous functions are uniformly continuous”, Bull. Austral. Math. Soc., 33 (1986), 397–406 | DOI | MR | Zbl

[3] Aggarwal M., Kundu S., “More about the cofinally complete spaces and the Atsuji spaces”, Houston J. Math., 42:4 (2016), 1373–1395 | MR | Zbl

[4] Atsuji M., “Uniform continuity of continuous functions of metric spaces”, Pacific J. Math., 8 (1958), 11–16 | DOI | MR | Zbl

[5] Beer G., “Between compactness and completeness”, Top. Appl., 155 (2008), 503–514 | DOI | MR | Zbl

[6] Jain T., Kundu S., “Atsuji completions: Equivalent characterisations”, Top. Appl., 154 (2007), 28–38 | DOI | MR | Zbl

[7] Beer G., Lechicki A., Levi S., Naimpally S., “Distance functionals and suprema of hyperspace topologies”, Ann. Mat. Pura Appl. (4), 162 (1992), 367–381 | DOI | MR | Zbl

[8] Jain T., Kundu S., “Atsuji completions vis-à-vis hyperspaces”, Math. Slovaca, 58 (2008), 497–508 | DOI | MR | Zbl

[9] Beer G. A., Himmelberg J. C., Prikry K., Van Vleck F. S., “The locally finite topology on $2^X$”, Proc. Amer. Math. Soc., 101 (1987), 168–172 | MR | Zbl

[10] Beer G., “Metric spaces on which continuous functions are uniformly continuous and Hausdorff distance”, Proc. Amer. Math. Soc., 95 (1985), 653–658 | DOI | MR | Zbl

[11] Mrowka S. G., “On normal metrics”, Amer. Math. Monthly, 72 (1965), 998–1001 | DOI | MR | Zbl

[12] Nadler S. B., West T., “A note on Lebesgue spaces”, Topology Proc., 6 (1981), 363–369 | MR

[13] Romaguera S., Antonino J., “On Lebesgue quasi-metrizability”, Boll. UMI, 7 (1993), 59–66 | MR | Zbl

[14] Morris S. A., Noussair E. S., “The Schauder-Tychonoff fixed point theorem and applications”, Mat. Casopis Sloven. Akad. Vied., 25 (1975), 165–172 | MR | Zbl

[15] Nadler S. B. Jr., “Induced universal maps and some hyperspaces with the fixed point property”, Proc. Amer. Math. Soc., 100 (1987), 749–754 | DOI | MR | Zbl

[16] Arutyunov A. V., Greshnov A. V., “$(q_1, q_2)$-kvazimetricheskie prostranstva. Nakryvayuschie otobrazheniya i tochki sovpadeniya”, Izv. RAN. Ser. matem., 82:2 (2018), 3–32 | MR | Zbl

[17] Arutyunov A. V., Greshnov A. V., Lokutsievskii L. V., Storozhuk K. V., “Topological and geometrical properties of spaces with symmetric and nonsymmetric $f$-quasimetrics”, Top. Appl., 221 (2017), 178–194 | DOI | MR | Zbl

[18] Beer G., Topologies on Closed and Closed Convex Sets, Kluwer Academic Publ., Dordrecht, 1993 | MR | Zbl

[19] Granas A., Dugundji J., Fixed Point Theory, Springer, N. Y., 2003 | MR | Zbl