On finitely based $\mathrm{T}$-spaces of free Lie nilpotent algebras of rank~$2$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2022), pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that in free Lie nilpotent n-class algebra $F_2^{(n)}$ of rank $2$ over the field of characteristic $p \ge n\ge 4$ there exists a finite decreasing series of $\rm T$-ideals $T_0 \supseteq T_1\supseteq \dots T_k\supseteq T_{k+1}=0$, such as the $T_0=T^{(3)}$ – $\rm T$-idel, generated by the commutator $[x_1,x_2,x_3]$, and factors $T_i/T_{i+1}$ do not contain the proper $\rm T$-spaces. This implies that every $\rm T$-space of the algebra $F_2^{(n)}$ which contained in the $\rm T$-ideal $ T ^ {(3)} $ has a finite system of generators. This result is an answer to the question of A.V. Grishin, formulated in the work A.V. Grishin, On $\rm T$-spaces in a relatively free two-generated Lie nilpotent associative algebra of index 4, J. Math. Sci. 191:5 (2013), 686–690.
Keywords: Lie nilpotent algebras of rank $2$, $\rm T$-ideal, $\rm T$-space, finite basisability.
@article{IVM_2022_10_a0,
     author = {V. I. Glizburg and S. V. Pchelintsev},
     title = {On finitely based $\mathrm{T}$-spaces of free {Lie} nilpotent algebras of rank~$2$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--10},
     publisher = {mathdoc},
     number = {10},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2022_10_a0/}
}
TY  - JOUR
AU  - V. I. Glizburg
AU  - S. V. Pchelintsev
TI  - On finitely based $\mathrm{T}$-spaces of free Lie nilpotent algebras of rank~$2$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2022
SP  - 3
EP  - 10
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2022_10_a0/
LA  - ru
ID  - IVM_2022_10_a0
ER  - 
%0 Journal Article
%A V. I. Glizburg
%A S. V. Pchelintsev
%T On finitely based $\mathrm{T}$-spaces of free Lie nilpotent algebras of rank~$2$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2022
%P 3-10
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2022_10_a0/
%G ru
%F IVM_2022_10_a0
V. I. Glizburg; S. V. Pchelintsev. On finitely based $\mathrm{T}$-spaces of free Lie nilpotent algebras of rank~$2$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2022), pp. 3-10. http://geodesic.mathdoc.fr/item/IVM_2022_10_a0/

[1] Specht W., “Gesetze in Ringen. $1$”, Math. Z., 52 (1950), 557–589 | DOI | MR | Zbl

[2] Falk G., “Konstanzelemente in Ringen mit Differentiation”, Math. Ann., 124 (1952), 182–186 | DOI | MR | Zbl

[3] Grishin A. V., “O konechnoi baziruemosti sistem obobschennykh mnogochlenov”, Izv. AN SSSR. Ser. matem., 54:5 (1990), 899–927 | Zbl

[4] Grishin A. V., “O konechnoi baziruemosti abstraktnykh T-prostranstv”, Fundament. i prikl. matem., 1:3 (1995), 669–700 | MR | Zbl

[5] Schigolev V. V., “Primery beskonechno baziruemykh T-prostranstv”, Matem. sb., 191:3 (2000), 143–160 | MR

[6] Grishin A. V., “O T-prostranstvakh v otnositelno svobodnoi dvuporozhdennoi lievski nilpotentnoi algebre indeksa $4$”, Fundament. i prikl. matem., 17:4 (2012), 133–139

[7] Pchelintsev S. V., “Otnositelno svobodnye assotsiativnye Li nilpotentnye algebry ranga $3$”, Sib. elektron. matem. izv., 16 (2019), 1937–1946 http://semr.math.nsc.ru | Zbl

[8] Jacobson N., Lie algebras, Interscience Tracts Pure and Appl. Math., 10, Interscience, N. Y.-London, 1962 | MR | Zbl

[9] Grishin A. V., Pchelintsev S. V., “O tsentrakh otnositelno svobodnykh assotsiativnykh algebr s tozhdestvom lievoi nilpotentnosti”, Matem. sb., 206:11 (2015), 113–130 | MR | Zbl