On finitely based $\mathrm{T}$-spaces of free Lie nilpotent algebras of rank~$2$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2022), pp. 3-10
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that in free Lie nilpotent n-class algebra $F_2^{(n)}$ of rank $2$ over the field of characteristic $p \ge n\ge 4$ there exists a finite decreasing series of $\rm T$-ideals $T_0 \supseteq T_1\supseteq \dots T_k\supseteq T_{k+1}=0$, such as the $T_0=T^{(3)}$ – $\rm T$-idel, generated by the commutator $[x_1,x_2,x_3]$, and factors $T_i/T_{i+1}$ do not contain the proper $\rm T$-spaces. This implies that every $\rm T$-space of the algebra $F_2^{(n)}$ which contained in the $\rm T$-ideal $ T ^ {(3)} $ has a finite system of generators.
This result is an answer to the question of A.V. Grishin, formulated in the work A.V. Grishin, On $\rm T$-spaces in a relatively free two-generated Lie nilpotent associative algebra of index 4, J. Math. Sci. 191:5 (2013), 686–690.
Keywords:
Lie nilpotent algebras of rank $2$, $\rm T$-ideal, $\rm T$-space, finite basisability.
@article{IVM_2022_10_a0,
author = {V. I. Glizburg and S. V. Pchelintsev},
title = {On finitely based $\mathrm{T}$-spaces of free {Lie} nilpotent algebras of rank~$2$},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--10},
publisher = {mathdoc},
number = {10},
year = {2022},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2022_10_a0/}
}
TY - JOUR
AU - V. I. Glizburg
AU - S. V. Pchelintsev
TI - On finitely based $\mathrm{T}$-spaces of free Lie nilpotent algebras of rank~$2$
JO - Izvestiâ vysših učebnyh zavedenij. Matematika
PY - 2022
SP - 3
EP - 10
IS - 10
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/IVM_2022_10_a0/
LA - ru
ID - IVM_2022_10_a0
ER -
V. I. Glizburg; S. V. Pchelintsev. On finitely based $\mathrm{T}$-spaces of free Lie nilpotent algebras of rank~$2$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2022), pp. 3-10. http://geodesic.mathdoc.fr/item/IVM_2022_10_a0/