Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2021_9_a6, author = {D. Sharma and S. K. Sunanda and S. K. Parhi}, title = {Convergence of {Traub's} iteration under $\omega$ continuity condition in {Banach} spaces}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {61--79}, publisher = {mathdoc}, number = {9}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2021_9_a6/} }
TY - JOUR AU - D. Sharma AU - S. K. Sunanda AU - S. K. Parhi TI - Convergence of Traub's iteration under $\omega$ continuity condition in Banach spaces JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2021 SP - 61 EP - 79 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2021_9_a6/ LA - ru ID - IVM_2021_9_a6 ER -
%0 Journal Article %A D. Sharma %A S. K. Sunanda %A S. K. Parhi %T Convergence of Traub's iteration under $\omega$ continuity condition in Banach spaces %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2021 %P 61-79 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2021_9_a6/ %G ru %F IVM_2021_9_a6
D. Sharma; S. K. Sunanda; S. K. Parhi. Convergence of Traub's iteration under $\omega$ continuity condition in Banach spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2021), pp. 61-79. http://geodesic.mathdoc.fr/item/IVM_2021_9_a6/
[1] Argyros I. K., Convergence and Application of Newton-type Iterations, Springer, Berlin, 2008
[2] Argyros I. K., Cho Y. J., Hilout S., Numerical Methods for Equations and its Applications, Taylor Francis, CRC Press, New York, 2012
[3] Argyros I. K., Hilout S., Computational methods in nonlinear Analysis, World Sci. Publ. House, New Jersey, 2013 | Zbl
[4] Behl R., Cordero A., Motsa S. S., Torregrosa J. R., “Construction of fourth-order optimal families of iterative methods and their dynamics”, Appl. Math. Comput., 271 (2015), 89–101 | Zbl
[5] Chun C., Lee M. Y., Neta B., Džunić J., “On optimal fourth-order iterative methods free from second derivative and their dynamics”, Appl. Math. Comput., 218:11 (2012), 6427–6438 | Zbl
[6] Cordero A., Torregrosa J. R., “Variants of Newton's method for functions of several variables”, Appl. Math. Comput., 183 (2006), 199–208 | Zbl
[7] Darvishi M. T., Barati A., “A fourth-order method from quadrature formulae to solve systems of nonlinear equations”, Appl. Math. Comput., 188 (2007), 257–261 | Zbl
[8] Frontini M., Sormani E., “Some variant of Newton's method with third order convergence”, Appl. Math. Comput., 140 (2003), 419–426 | Zbl
[9] Homeier H. H. H., “A modified Newton method with cubic convergence: the multivariable case”, J. Comput. Appl. Math., 169 (2004), 161–169 | DOI | Zbl
[10] Kou J., Li Y., Wang X., “A composite fourth-order iterative method for solving non-linear equations”, Appl. Math. Comput., 184 (2007), 471–475 | Zbl
[11] Özban A. Y., “Some new variants of Newton's method”, Appl. Math. Lett., 17 (2004), 677–682 | DOI | Zbl
[12] Ortega J. M., Rheinboldt W. C., Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970 | Zbl
[13] Potra F. A. Ptak V., Nondiscrete induction and iterative processes, Research Notes in Mathematics, Pitman Publ., Boston, MA, 1984 | Zbl
[14] Petković M.S., Neta B., Petković L., Dz̃unić D., Multipoint methods for solving nonlinear equations, Elsevier, Amsterdam, 2013 | Zbl
[15] Rall L. B., Computational solution of nonlinear operator equations, Robert E. Krieger, New York, 1979 | Zbl
[16] Traub J. F., Iterative Methods for Solution of Equations, Prentice-Hal, Englewood Cliffs, 1964 | Zbl
[17] Weerakoon S., Fernando T. G.I., “A variant of Newton's method with accelerated third-order convergence”, Appl. Math. Lett., 13 (2000), 87–93 | DOI | Zbl
[18] Amat S., Argyros I. K., Busquier S., Hernández-Verón M.A., Martínez E., “On the local convergence study for an efficient k-step iterative method”, J. Comput. Appl. Math., 343 (2018), 753–761 | DOI | Zbl
[19] Argyros I. K., “On the semilocal convergence of a fast two-step Newton method”, Revista Colombiana de Matemáticas, 42:1 (2008), 15–24 | Zbl
[20] Argyros I. K., Hilout S., “On the local convergence of fast two-step Newton-like methods for solving nonlinear equations”, J. Comput. Appl. Math., 245 (2013), 1–9 | DOI | Zbl
[21] Argyros I. K., Magreñán Á.A., “A study on the local convergence and the dynamics of Chebyshev–Halley-type methods free from second derivative”, Numer. Algor., 71:1 (2015), 1–23 | DOI | Zbl
[22] Argyros I. K., George S., Magreñán Á.A., “Local convergence for multi-point-parametric Chebyshev–Halley-type methods of higher convergence order”, J. Comput. Appl. Math., 282 (2015), 215–224 | DOI | Zbl
[23] Argyros I. K., Cho Y. J., George S., “Local convergence for some third order iterative methods under weak conditions”, J. Korean Math. Soc., 53:4 (2016), 781–793 | DOI | Zbl
[24] Argyros I. K., George S., “Local convergence of a fifth convergence order method in Banach space”, Arab J. Math. Sci., 23 (2017), 205–214 | Zbl
[25] Argyros I. K., George S., “On the complexity of extending the convergence region for Traub's method”, J. Complex., 56 (2020), 101423 | DOI | Zbl
[26] Argyros I. K., Sharma D., Parhi S. K., “On the local convergence of Weerakoon-Fernando method with $\omega$-continuity condition in Banach spaces”, SeMA J., 2020 | DOI
[27] Arutyunov A., Zhukovskiy E., Zhukovskiy S., “The Kantorovich theorem on fixed points in metric spaces and coincident points”, Proc. Steklov Inst. Math., 304 (2019), 60–73 | DOI | Zbl
[28] Arutyunov A., Zhukovskiy E., Zhukovskiy S., “On the stability of fixed points and coincidence points of mappings in the generalized Kantorovich's theorem”, Topology and Its Appl., 275 (2020), 107030 | DOI | Zbl
[29] Cordero A., Ezquerro J. A., Hernandez-Veron M. A., “On the local convergence of a fifth-order iterative method in Banach spaces”, Appl. Math. Comput., 251 (2015), 396–403 | Zbl
[30] Ezquerro J. A., González D., Hernández M. A., “On the local convergence of Newton's method under generalized conditions of Kantorovich”, Appl. Math. Lett., 26:5 (2013), 566–570 | DOI | Zbl
[31] Hernández M. A., Rubio M. J., “On the local convergence of a Newton–Kurchatov-type method for non-differentiable operators”, Appl. Math. Comput., 304 (2017), 1–9 | Zbl
[32] Kantorovich L., Akilov G., Functional Analysis, Pergamon Press, Oxford, 1982 | Zbl
[33] Maroju P., Magreñán Á.A., Sarrí-a Í, Kumar A., “Local convergence of fourth and fifth order parametric family of iterative methods in Banach spaces”, J. Math. Chem., 58 (2020), 686–705 | DOI | Zbl
[34] Martínez E., Singh S., Hueso J. L., Gupta D. K., “Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces”, Appl. Math. Comput., 281 (2016), 252–265 | Zbl
[35] Sharma D., Parhi S. K., “On the local convergence of a third-order iterative scheme in Banach spaces”, Rend. Circ. Mat. Palermo. II. Ser., 2020 | DOI
[36] Sharma J. R., Argyros I. K., “Local convergence of a Newton–Traub composition in Banach spaces”, SeMA J., 75:1 (2017), 57–68 | DOI
[37] Singh S., Gupta D. K., Badoni R. P., Martínez E., Hueso J. L., “Local convergence of a parameter based iteration with Hölder continuous derivative in Banach spaces”, Calcolo, 54:2 (2017), 527–539 | DOI | Zbl
[38] Parhi S. K., Gupta D. K., “Convergence of a third order method for fixed points in Banach spaces”, Numer. Algor., 60 (2012), 419–434 | DOI | Zbl
[39] Zubelevich O., “Coincidence points of mapping in Banach spaces”, Fixed Point Theory, 21:1 (2020), 389–394 | DOI | Zbl
[40] Scott M., Neta B., Chun C., “Basin attractors for various methods”, Appl. Math. Comput., 218 (2011), 2584–2599 | Zbl
[41] Neta B., Chun C., Scott M., “Basins of attraction for optimal eighth order methods to find simple roots of nonlinear equations”, Appl. Math. Comput., 227 (2014), 567–592 | Zbl
[42] Noor M. A., Wassem M., “Some iterative methods for solving a system of nonlinear equations”, Appl. Math. Comput., 57 (2009), 101–106 | DOI | Zbl