Convergence of Traub's iteration under $\omega$ continuity condition in Banach spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2021), pp. 61-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

We provide the local and semi-local convergence analysis of the most celebrated cubically convergent Traub's iterative method (TM) for obtaining solutions of Banach space valued nonlinear operator equations. The significance of our work is that the convergence study only needs the $\omega$ continuity condition on the first-order Fréchet derivative and avoids the use of higher order derivatives, which do not occur in this scheme. Also, the proposed local analysis extends the domain of convergence and applicability of this scheme. Using basins of attraction technique the complex dynamics of the scheme are also explored when it is applied on various complex polynomials. Finally, convergence radii for benchmark numerical problems are computed applying our analytical results. From these numerical tests, it is confirmed that the proposed analysis provides a larger convergence domain in comparison with the earlier work.
Keywords: Traub's iterative method, Semi-local convergence, $\omega$ continuity condition, Basin of attraction.
Mots-clés : Local convergence
@article{IVM_2021_9_a6,
     author = {D. Sharma and S. K. Sunanda and S. K. Parhi},
     title = {Convergence of {Traub's} iteration under $\omega$ continuity condition in {Banach} spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {61--79},
     publisher = {mathdoc},
     number = {9},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_9_a6/}
}
TY  - JOUR
AU  - D. Sharma
AU  - S. K. Sunanda
AU  - S. K. Parhi
TI  - Convergence of Traub's iteration under $\omega$ continuity condition in Banach spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 61
EP  - 79
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_9_a6/
LA  - ru
ID  - IVM_2021_9_a6
ER  - 
%0 Journal Article
%A D. Sharma
%A S. K. Sunanda
%A S. K. Parhi
%T Convergence of Traub's iteration under $\omega$ continuity condition in Banach spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 61-79
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_9_a6/
%G ru
%F IVM_2021_9_a6
D. Sharma; S. K. Sunanda; S. K. Parhi. Convergence of Traub's iteration under $\omega$ continuity condition in Banach spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2021), pp. 61-79. http://geodesic.mathdoc.fr/item/IVM_2021_9_a6/

[1] Argyros I. K., Convergence and Application of Newton-type Iterations, Springer, Berlin, 2008

[2] Argyros I. K., Cho Y. J., Hilout S., Numerical Methods for Equations and its Applications, Taylor Francis, CRC Press, New York, 2012

[3] Argyros I. K., Hilout S., Computational methods in nonlinear Analysis, World Sci. Publ. House, New Jersey, 2013 | Zbl

[4] Behl R., Cordero A., Motsa S. S., Torregrosa J. R., “Construction of fourth-order optimal families of iterative methods and their dynamics”, Appl. Math. Comput., 271 (2015), 89–101 | Zbl

[5] Chun C., Lee M. Y., Neta B., Džunić J., “On optimal fourth-order iterative methods free from second derivative and their dynamics”, Appl. Math. Comput., 218:11 (2012), 6427–6438 | Zbl

[6] Cordero A., Torregrosa J. R., “Variants of Newton's method for functions of several variables”, Appl. Math. Comput., 183 (2006), 199–208 | Zbl

[7] Darvishi M. T., Barati A., “A fourth-order method from quadrature formulae to solve systems of nonlinear equations”, Appl. Math. Comput., 188 (2007), 257–261 | Zbl

[8] Frontini M., Sormani E., “Some variant of Newton's method with third order convergence”, Appl. Math. Comput., 140 (2003), 419–426 | Zbl

[9] Homeier H. H. H., “A modified Newton method with cubic convergence: the multivariable case”, J. Comput. Appl. Math., 169 (2004), 161–169 | DOI | Zbl

[10] Kou J., Li Y., Wang X., “A composite fourth-order iterative method for solving non-linear equations”, Appl. Math. Comput., 184 (2007), 471–475 | Zbl

[11] Özban A. Y., “Some new variants of Newton's method”, Appl. Math. Lett., 17 (2004), 677–682 | DOI | Zbl

[12] Ortega J. M., Rheinboldt W. C., Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1970 | Zbl

[13] Potra F. A. Ptak V., Nondiscrete induction and iterative processes, Research Notes in Mathematics, Pitman Publ., Boston, MA, 1984 | Zbl

[14] Petković M.S., Neta B., Petković L., Dz̃unić D., Multipoint methods for solving nonlinear equations, Elsevier, Amsterdam, 2013 | Zbl

[15] Rall L. B., Computational solution of nonlinear operator equations, Robert E. Krieger, New York, 1979 | Zbl

[16] Traub J. F., Iterative Methods for Solution of Equations, Prentice-Hal, Englewood Cliffs, 1964 | Zbl

[17] Weerakoon S., Fernando T. G.I., “A variant of Newton's method with accelerated third-order convergence”, Appl. Math. Lett., 13 (2000), 87–93 | DOI | Zbl

[18] Amat S., Argyros I. K., Busquier S., Hernández-Verón M.A., Martínez E., “On the local convergence study for an efficient k-step iterative method”, J. Comput. Appl. Math., 343 (2018), 753–761 | DOI | Zbl

[19] Argyros I. K., “On the semilocal convergence of a fast two-step Newton method”, Revista Colombiana de Matemáticas, 42:1 (2008), 15–24 | Zbl

[20] Argyros I. K., Hilout S., “On the local convergence of fast two-step Newton-like methods for solving nonlinear equations”, J. Comput. Appl. Math., 245 (2013), 1–9 | DOI | Zbl

[21] Argyros I. K., Magreñán Á.A., “A study on the local convergence and the dynamics of Chebyshev–Halley-type methods free from second derivative”, Numer. Algor., 71:1 (2015), 1–23 | DOI | Zbl

[22] Argyros I. K., George S., Magreñán Á.A., “Local convergence for multi-point-parametric Chebyshev–Halley-type methods of higher convergence order”, J. Comput. Appl. Math., 282 (2015), 215–224 | DOI | Zbl

[23] Argyros I. K., Cho Y. J., George S., “Local convergence for some third order iterative methods under weak conditions”, J. Korean Math. Soc., 53:4 (2016), 781–793 | DOI | Zbl

[24] Argyros I. K., George S., “Local convergence of a fifth convergence order method in Banach space”, Arab J. Math. Sci., 23 (2017), 205–214 | Zbl

[25] Argyros I. K., George S., “On the complexity of extending the convergence region for Traub's method”, J. Complex., 56 (2020), 101423 | DOI | Zbl

[26] Argyros I. K., Sharma D., Parhi S. K., “On the local convergence of Weerakoon-Fernando method with $\omega$-continuity condition in Banach spaces”, SeMA J., 2020 | DOI

[27] Arutyunov A., Zhukovskiy E., Zhukovskiy S., “The Kantorovich theorem on fixed points in metric spaces and coincident points”, Proc. Steklov Inst. Math., 304 (2019), 60–73 | DOI | Zbl

[28] Arutyunov A., Zhukovskiy E., Zhukovskiy S., “On the stability of fixed points and coincidence points of mappings in the generalized Kantorovich's theorem”, Topology and Its Appl., 275 (2020), 107030 | DOI | Zbl

[29] Cordero A., Ezquerro J. A., Hernandez-Veron M. A., “On the local convergence of a fifth-order iterative method in Banach spaces”, Appl. Math. Comput., 251 (2015), 396–403 | Zbl

[30] Ezquerro J. A., González D., Hernández M. A., “On the local convergence of Newton's method under generalized conditions of Kantorovich”, Appl. Math. Lett., 26:5 (2013), 566–570 | DOI | Zbl

[31] Hernández M. A., Rubio M. J., “On the local convergence of a Newton–Kurchatov-type method for non-differentiable operators”, Appl. Math. Comput., 304 (2017), 1–9 | Zbl

[32] Kantorovich L., Akilov G., Functional Analysis, Pergamon Press, Oxford, 1982 | Zbl

[33] Maroju P., Magreñán Á.A., Sarrí-a Í, Kumar A., “Local convergence of fourth and fifth order parametric family of iterative methods in Banach spaces”, J. Math. Chem., 58 (2020), 686–705 | DOI | Zbl

[34] Martínez E., Singh S., Hueso J. L., Gupta D. K., “Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces”, Appl. Math. Comput., 281 (2016), 252–265 | Zbl

[35] Sharma D., Parhi S. K., “On the local convergence of a third-order iterative scheme in Banach spaces”, Rend. Circ. Mat. Palermo. II. Ser., 2020 | DOI

[36] Sharma J. R., Argyros I. K., “Local convergence of a Newton–Traub composition in Banach spaces”, SeMA J., 75:1 (2017), 57–68 | DOI

[37] Singh S., Gupta D. K., Badoni R. P., Martínez E., Hueso J. L., “Local convergence of a parameter based iteration with Hölder continuous derivative in Banach spaces”, Calcolo, 54:2 (2017), 527–539 | DOI | Zbl

[38] Parhi S. K., Gupta D. K., “Convergence of a third order method for fixed points in Banach spaces”, Numer. Algor., 60 (2012), 419–434 | DOI | Zbl

[39] Zubelevich O., “Coincidence points of mapping in Banach spaces”, Fixed Point Theory, 21:1 (2020), 389–394 | DOI | Zbl

[40] Scott M., Neta B., Chun C., “Basin attractors for various methods”, Appl. Math. Comput., 218 (2011), 2584–2599 | Zbl

[41] Neta B., Chun C., Scott M., “Basins of attraction for optimal eighth order methods to find simple roots of nonlinear equations”, Appl. Math. Comput., 227 (2014), 567–592 | Zbl

[42] Noor M. A., Wassem M., “Some iterative methods for solving a system of nonlinear equations”, Appl. Math. Comput., 57 (2009), 101–106 | DOI | Zbl