Stable hyperbolic limit cycles for a class of differential systems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2021), pp. 49-60
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we introduce an explicit expression of invariant algebraic curves for a class of polynomial differential systems, then we introduce an explicit expression of its first integral. Moreover, we determine sufficient conditions for these systems to possess a limit cycle, which can be expressed by an explicit formula. Concrete examples exhibiting the applicability of our results are introduced.
Keywords:
Hilbert 16th problem, dynamical system, limit cycle, invariant algebraic curve, first integral.
@article{IVM_2021_9_a5,
author = {S. E. Hamizi and R. Boukoucha},
title = {Stable hyperbolic limit cycles for a class of differential systems},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {49--60},
publisher = {mathdoc},
number = {9},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2021_9_a5/}
}
S. E. Hamizi; R. Boukoucha. Stable hyperbolic limit cycles for a class of differential systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2021), pp. 49-60. http://geodesic.mathdoc.fr/item/IVM_2021_9_a5/