Stable hyperbolic limit cycles for a class of differential systems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2021), pp. 49-60

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we introduce an explicit expression of invariant algebraic curves for a class of polynomial differential systems, then we introduce an explicit expression of its first integral. Moreover, we determine sufficient conditions for these systems to possess a limit cycle, which can be expressed by an explicit formula. Concrete examples exhibiting the applicability of our results are introduced.
Keywords: Hilbert 16th problem, dynamical system, limit cycle, invariant algebraic curve, first integral.
@article{IVM_2021_9_a5,
     author = {S. E. Hamizi and R. Boukoucha},
     title = {Stable hyperbolic limit cycles for a class of differential systems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {49--60},
     publisher = {mathdoc},
     number = {9},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_9_a5/}
}
TY  - JOUR
AU  - S. E. Hamizi
AU  - R. Boukoucha
TI  - Stable hyperbolic limit cycles for a class of differential systems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 49
EP  - 60
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_9_a5/
LA  - ru
ID  - IVM_2021_9_a5
ER  - 
%0 Journal Article
%A S. E. Hamizi
%A R. Boukoucha
%T Stable hyperbolic limit cycles for a class of differential systems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 49-60
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_9_a5/
%G ru
%F IVM_2021_9_a5
S. E. Hamizi; R. Boukoucha. Stable hyperbolic limit cycles for a class of differential systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2021), pp. 49-60. http://geodesic.mathdoc.fr/item/IVM_2021_9_a5/