Generalized Lie-type derivations of alternative algebras
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2021), pp. 40-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we intend to describe generalized Lie-type derivations using, among other things, a generalization for alternative algebras of the following result: "If $F:A\to A$ is a generalized Lie $n$-derivation associated with a Lie $n$-derivation $D$, then a linear map $H=F-D$ satisfies $H(p_n(x_1,x_2,\ldots ,x_n)) =p_n(H(x_1),x_2,\ldots ,x_n)$ for all $x_1,x_2,\ldots ,x_n\in A$". Thus, if $A$ is a unital alternative algebra with a nontrivial idempotent $e_1$ satisfying certain conditions, then a generalized Lie-type derivation $F : A \rightarrow A$ is of the form $F(x) = \lambda x + \Xi(x)$ for all $x \in A$ , where $\lambda \in Z(A)$ and $\Xi : A \rightarrow A$ is a Lie-type derivation.
Keywords: alternative algebra, generalized Lie derivation.
@article{IVM_2021_9_a4,
     author = {B. L. M. Ferreira and G. C. De Moraes},
     title = {Generalized {Lie-type} derivations of alternative algebras},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {40--48},
     publisher = {mathdoc},
     number = {9},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_9_a4/}
}
TY  - JOUR
AU  - B. L. M. Ferreira
AU  - G. C. De Moraes
TI  - Generalized Lie-type derivations of alternative algebras
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 40
EP  - 48
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_9_a4/
LA  - ru
ID  - IVM_2021_9_a4
ER  - 
%0 Journal Article
%A B. L. M. Ferreira
%A G. C. De Moraes
%T Generalized Lie-type derivations of alternative algebras
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 40-48
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_9_a4/
%G ru
%F IVM_2021_9_a4
B. L. M. Ferreira; G. C. De Moraes. Generalized Lie-type derivations of alternative algebras. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2021), pp. 40-48. http://geodesic.mathdoc.fr/item/IVM_2021_9_a4/

[1] Ferreira B. L.M., Guzzo H., Wei F., “Multiplicative Lie-type derivations on alternative rings”, Communications in Algebra, 48 (2020), 5396–5411 | DOI | Zbl

[2] Herstein I. N., “Lie and Jordan structures in simple associative rings”, Bull. Amer. Math. Soc., 67 (1961), 517–531 | DOI | Zbl

[3] Martindale W. S. III, “Lie derivations of primitive rings”, Michigan Math. J., 11 (1964), 183–187 | DOI | Zbl

[4] Brešar M., “Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings”, Transactions of the American Math. Soc., 335 (1993), 525–546 | DOI | Zbl

[5] Li C., Lu F., Wang T., “Nonlinear maps preserving the Jordan triple $*$-product on von Neumann algebras”, Annals of Funct. Anal., 7:3 (2016), 496–507 | DOI | Zbl

[6] Li C., Lu F., “Nonlinear Maps Preserving the Jordan Triple $1$-$*$-product on von Neumann algebras”, Complex Anal. and Operator Theory, 11:1 (2017), 109–117 | DOI | Zbl

[7] Li C., Zhao F., Chen Q., “Nonlinear skew Lie triple derivations between factors”, Acta Math. Sinica. English Ser., 32:7 (2016), 821–830 | DOI | Zbl

[8] Zhao F., Li C., “Nonlinear $*$-Jordan triple derivations on von Neumann algebras”, Math. Slovaca, 68:1 (2018), 163–170 | DOI | Zbl

[9] Zhao F., Li C., “Nonlinear maps preserving the Jordan triple $*$-product between factors”, Indagationes Math., 29:2 (2018), 619–627 | DOI | Zbl

[10] Abdullaev I. Z., “$n$-Lie derivations on von Neumann algebras”, Uzbek. Mat. Zh., 5–6 (1992), 3–9

[11] Benkovič D., “Lie triple derivations of unital algebras with idempotents”, Linear Multilinear Algebra, 63 (2015), 141–165 | DOI | Zbl

[12] Benkovič D., Eremita D., “Multiplicative Lie $n$-derivations of triangular rings”, Linear Algebra Appl., 436 (2012), 4223–424 | DOI

[13] Li C.-J., Chen Q.-Y., “Additivity of Lie multiplicative mappings on rings”, Adv. in Math. (China), 44:7 (2015), 15038

[14] Li C.-J. Fang X.-C., Lu F.-Y., Wang T., “Lie triple derivable mappings on rings”, Comm. Algebra, 42 (2014), 2510–2527 | DOI | Zbl

[15] Ferreira B. L.M., Guzzo H.Jr., “Lie maps on alternative rings”, Boll. Unione Mat. Ital., 13 (2020), 181–192 | DOI | Zbl

[16] Ferreira B. L.M., Guzzo H.Jr., “Characterizaiton of Lie multiplicative derivation of alternative rings”, Rocky Mountain J. Math., 49 (2019), 761–772 | Zbl

[17] Fošner A. Wei F., Xiao Z.-K., “Nonlinear Lie-type derivations of von Neumann algebras and related topics”, Colloq. Math., 132 (2013), 53–71 | DOI

[18] Kaygorodov I., Popov Yu., “Alternative algebras that admit derivations with invertible values and invertible derivation”, Izv. Math., 78 (2014), 922–936 | DOI | Zbl

[19] Kaygorodov I., Popov Yu., “A characterization of nilpotent nonassociative algebras by invertible Leibniz-derivations”, J. Algebra, 456 (2016), 323–347 | DOI | Zbl

[20] Slater M., “Prime alternative rings, I”, J. Algebra, 15 (1970), 229–243 | DOI | Zbl

[21] Ferreira B. L. M., Kaygorodov I., “Commuting maps on alternative rings”, Ricerche di Matematica, 2020 | DOI

[22] Benkovič D., “Generalized Lie derivations of unital algebras with idempotents”, Operators and matrices, 12 (2018), 357–367 | DOI | Zbl

[23] Benkovič D., “Lie triple derivations of unital algebras with idempotents”, Linear Multilinear Algebra, 63 (2015), 141–165 | DOI | Zbl

[24] Bai Z., Du S., “Strong commutativity preserving maps on rings”, Rocky Mountain J. of Math., 44 (2014), 733–742 | DOI | Zbl