Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2021_9_a4, author = {B. L. M. Ferreira and G. C. De Moraes}, title = {Generalized {Lie-type} derivations of alternative algebras}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {40--48}, publisher = {mathdoc}, number = {9}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2021_9_a4/} }
B. L. M. Ferreira; G. C. De Moraes. Generalized Lie-type derivations of alternative algebras. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2021), pp. 40-48. http://geodesic.mathdoc.fr/item/IVM_2021_9_a4/
[1] Ferreira B. L.M., Guzzo H., Wei F., “Multiplicative Lie-type derivations on alternative rings”, Communications in Algebra, 48 (2020), 5396–5411 | DOI | Zbl
[2] Herstein I. N., “Lie and Jordan structures in simple associative rings”, Bull. Amer. Math. Soc., 67 (1961), 517–531 | DOI | Zbl
[3] Martindale W. S. III, “Lie derivations of primitive rings”, Michigan Math. J., 11 (1964), 183–187 | DOI | Zbl
[4] Brešar M., “Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie mappings”, Transactions of the American Math. Soc., 335 (1993), 525–546 | DOI | Zbl
[5] Li C., Lu F., Wang T., “Nonlinear maps preserving the Jordan triple $*$-product on von Neumann algebras”, Annals of Funct. Anal., 7:3 (2016), 496–507 | DOI | Zbl
[6] Li C., Lu F., “Nonlinear Maps Preserving the Jordan Triple $1$-$*$-product on von Neumann algebras”, Complex Anal. and Operator Theory, 11:1 (2017), 109–117 | DOI | Zbl
[7] Li C., Zhao F., Chen Q., “Nonlinear skew Lie triple derivations between factors”, Acta Math. Sinica. English Ser., 32:7 (2016), 821–830 | DOI | Zbl
[8] Zhao F., Li C., “Nonlinear $*$-Jordan triple derivations on von Neumann algebras”, Math. Slovaca, 68:1 (2018), 163–170 | DOI | Zbl
[9] Zhao F., Li C., “Nonlinear maps preserving the Jordan triple $*$-product between factors”, Indagationes Math., 29:2 (2018), 619–627 | DOI | Zbl
[10] Abdullaev I. Z., “$n$-Lie derivations on von Neumann algebras”, Uzbek. Mat. Zh., 5–6 (1992), 3–9
[11] Benkovič D., “Lie triple derivations of unital algebras with idempotents”, Linear Multilinear Algebra, 63 (2015), 141–165 | DOI | Zbl
[12] Benkovič D., Eremita D., “Multiplicative Lie $n$-derivations of triangular rings”, Linear Algebra Appl., 436 (2012), 4223–424 | DOI
[13] Li C.-J., Chen Q.-Y., “Additivity of Lie multiplicative mappings on rings”, Adv. in Math. (China), 44:7 (2015), 15038
[14] Li C.-J. Fang X.-C., Lu F.-Y., Wang T., “Lie triple derivable mappings on rings”, Comm. Algebra, 42 (2014), 2510–2527 | DOI | Zbl
[15] Ferreira B. L.M., Guzzo H.Jr., “Lie maps on alternative rings”, Boll. Unione Mat. Ital., 13 (2020), 181–192 | DOI | Zbl
[16] Ferreira B. L.M., Guzzo H.Jr., “Characterizaiton of Lie multiplicative derivation of alternative rings”, Rocky Mountain J. Math., 49 (2019), 761–772 | Zbl
[17] Fošner A. Wei F., Xiao Z.-K., “Nonlinear Lie-type derivations of von Neumann algebras and related topics”, Colloq. Math., 132 (2013), 53–71 | DOI
[18] Kaygorodov I., Popov Yu., “Alternative algebras that admit derivations with invertible values and invertible derivation”, Izv. Math., 78 (2014), 922–936 | DOI | Zbl
[19] Kaygorodov I., Popov Yu., “A characterization of nilpotent nonassociative algebras by invertible Leibniz-derivations”, J. Algebra, 456 (2016), 323–347 | DOI | Zbl
[20] Slater M., “Prime alternative rings, I”, J. Algebra, 15 (1970), 229–243 | DOI | Zbl
[21] Ferreira B. L. M., Kaygorodov I., “Commuting maps on alternative rings”, Ricerche di Matematica, 2020 | DOI
[22] Benkovič D., “Generalized Lie derivations of unital algebras with idempotents”, Operators and matrices, 12 (2018), 357–367 | DOI | Zbl
[23] Benkovič D., “Lie triple derivations of unital algebras with idempotents”, Linear Multilinear Algebra, 63 (2015), 141–165 | DOI | Zbl
[24] Bai Z., Du S., “Strong commutativity preserving maps on rings”, Rocky Mountain J. of Math., 44 (2014), 733–742 | DOI | Zbl