Generalized Lie-type derivations of alternative algebras
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2021), pp. 40-48

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we intend to describe generalized Lie-type derivations using, among other things, a generalization for alternative algebras of the following result: "If $F:A\to A$ is a generalized Lie $n$-derivation associated with a Lie $n$-derivation $D$, then a linear map $H=F-D$ satisfies $H(p_n(x_1,x_2,\ldots ,x_n)) =p_n(H(x_1),x_2,\ldots ,x_n)$ for all $x_1,x_2,\ldots ,x_n\in A$". Thus, if $A$ is a unital alternative algebra with a nontrivial idempotent $e_1$ satisfying certain conditions, then a generalized Lie-type derivation $F : A \rightarrow A$ is of the form $F(x) = \lambda x + \Xi(x)$ for all $x \in A$ , where $\lambda \in Z(A)$ and $\Xi : A \rightarrow A$ is a Lie-type derivation.
Keywords: alternative algebra, generalized Lie derivation.
@article{IVM_2021_9_a4,
     author = {B. L. M. Ferreira and G. C. De Moraes},
     title = {Generalized {Lie-type} derivations of alternative algebras},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {40--48},
     publisher = {mathdoc},
     number = {9},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_9_a4/}
}
TY  - JOUR
AU  - B. L. M. Ferreira
AU  - G. C. De Moraes
TI  - Generalized Lie-type derivations of alternative algebras
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 40
EP  - 48
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_9_a4/
LA  - ru
ID  - IVM_2021_9_a4
ER  - 
%0 Journal Article
%A B. L. M. Ferreira
%A G. C. De Moraes
%T Generalized Lie-type derivations of alternative algebras
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 40-48
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_9_a4/
%G ru
%F IVM_2021_9_a4
B. L. M. Ferreira; G. C. De Moraes. Generalized Lie-type derivations of alternative algebras. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2021), pp. 40-48. http://geodesic.mathdoc.fr/item/IVM_2021_9_a4/