Mean-square approximation by ``angle'' in the space $L_{2,\mu}(\mathbb{R}^{2})$ with the Chebyshev--Hermite weight
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2021), pp. 3-12

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L_{2,\mu}(\mathbb{R}^{2}), \ \mu(x,y)=\exp\{-(x^{2}+y^{2})\}, \ \mathbb{R}=(-\infty, +\infty), \ \mathbb{R}^{2}:=\mathbb{R}\times\mathbb{R}$ be the space of functions $f$, for which $\mu^{1/2}f\in L_{2}(\mathbb{R}^{2}).$ In the metric of space $L_{2,\mu}(\mathbb{R}^{2})$ the sharp inequalities of Jackson-Stechkin type which relate the best mean squared approximation by “angle” formed with an algebraic polynomials of two variables averaged with Chebyshev-Hermite weight $L_{\nu} \ (1\leq \nu\leq\infty)$ and norm of module of continuity $k$-th order by variable $x$ and $l$-th order by variable $y$ with derivatives ${\mathcal D}^{r}f,$ were obtained. ${\mathcal D}$ — is Chebyshev differential operator of second order of form $${\mathcal D}:=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}-2x\frac{\partial}{\partial x}-2y\frac{\partial}{\partial y}.$$
Keywords: the best approximation with “angle”, translation operator, weight function, Chebyshev-Hermite operator, generalized module of continuity.
@article{IVM_2021_9_a0,
     author = {M. O. Akobirshoev},
     title = {Mean-square approximation by ``angle'' in the space $L_{2,\mu}(\mathbb{R}^{2})$ with the {Chebyshev--Hermite} weight},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--12},
     publisher = {mathdoc},
     number = {9},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_9_a0/}
}
TY  - JOUR
AU  - M. O. Akobirshoev
TI  - Mean-square approximation by ``angle'' in the space $L_{2,\mu}(\mathbb{R}^{2})$ with the Chebyshev--Hermite weight
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 3
EP  - 12
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_9_a0/
LA  - ru
ID  - IVM_2021_9_a0
ER  - 
%0 Journal Article
%A M. O. Akobirshoev
%T Mean-square approximation by ``angle'' in the space $L_{2,\mu}(\mathbb{R}^{2})$ with the Chebyshev--Hermite weight
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 3-12
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_9_a0/
%G ru
%F IVM_2021_9_a0
M. O. Akobirshoev. Mean-square approximation by ``angle'' in the space $L_{2,\mu}(\mathbb{R}^{2})$ with the Chebyshev--Hermite weight. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2021), pp. 3-12. http://geodesic.mathdoc.fr/item/IVM_2021_9_a0/