Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2021_9_a0, author = {M. O. Akobirshoev}, title = {Mean-square approximation by ``angle'' in the space $L_{2,\mu}(\mathbb{R}^{2})$ with the {Chebyshev--Hermite} weight}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--12}, publisher = {mathdoc}, number = {9}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2021_9_a0/} }
TY - JOUR AU - M. O. Akobirshoev TI - Mean-square approximation by ``angle'' in the space $L_{2,\mu}(\mathbb{R}^{2})$ with the Chebyshev--Hermite weight JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2021 SP - 3 EP - 12 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2021_9_a0/ LA - ru ID - IVM_2021_9_a0 ER -
%0 Journal Article %A M. O. Akobirshoev %T Mean-square approximation by ``angle'' in the space $L_{2,\mu}(\mathbb{R}^{2})$ with the Chebyshev--Hermite weight %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2021 %P 3-12 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2021_9_a0/ %G ru %F IVM_2021_9_a0
M. O. Akobirshoev. Mean-square approximation by ``angle'' in the space $L_{2,\mu}(\mathbb{R}^{2})$ with the Chebyshev--Hermite weight. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2021), pp. 3-12. http://geodesic.mathdoc.fr/item/IVM_2021_9_a0/
[1] Potapov M. K., “O priblizhenii «uglom»”, Tr. konf. po konstrukt. teorii funkts. (Budapesht, 1971), 371–399 | Zbl
[2] Potapov M. K., “Priblizhenie «uglom» i teoremy vlozheniya”, Math. Balkanica, 1972, no. 2, 183–198 | Zbl
[3] Vakarchuk S. B., Shabozov M. Sh., “O tochnykh znacheniyakh kvazipoperechnikov nekotorykh funktsionalnykh klassov”, Ukr. matem. zhurn., 48:3 (1996), 301–308
[4] Shabozov M. Sh., Akobirshoev M. O., “Kvazipoperechniki nekotorykh klassov differentsiruemykh periodicheskikh funktsii dvukh peremennykh”, Dokl. RAN, 404:4 (2005), 406–464
[5] Shabozov M. Sh., Akobirshoev M. O., “Tochnye znacheniya kvazapoprechnikov nekotorykh klassov differentsiruemykh periodicheskikh funktsii dvukh peremennykh”, Anal. Math., 35:1 (2009), 61–72 | DOI | Zbl
[6] Vakarchuk S. B., Shvachko A. V., “O nailuchshem priblizhenii «uglom» v srednem na ploskosti $\mathbb{R}^{2}$ s vesom Chebysheva–Ermita”, Zbirnik prats In-tu matematiki NAN Ukraini, 11:1 (2014), 35–46 | Zbl
[7] Shabozov M. Sh., Akobirshoev M. O., “Srednekvadraticheskoe priblizhenie “uglom” v metrike $L_2$ i znacheniya kvazipoperechnikov nekotorykh klassov funktsii”, Ukr. matem. zhurn., 72:6 (2020), 852–864 | Zbl
[8] Abilov V. A., Abilova M. V., “Priblizhenie funktsii v prostranstve $L_{2}(\mathbb{R}^{N}; e^{-|x|^{2}})$”, Matem. zametki, 57:1 (1995), 3–19 | Zbl
[9] Suetin P. K., Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1979
[10] Rafalson S. Z., “O priblizhenii funktsii v srednem summami Fure-Ermita”, Izv. vuzov. Matem., 1968, no. 7, 78–84
[11] Abilov M. V., Abilova F. V., “Nekotorye voprosy priblizheniya funktsii summami Fure–Ermita v prostranstve $L_{2}(\mathbb{R}, e^{-x^{2}})$”, Izv. vuzov. Matem., 2006, no. 1, 3–12 | Zbl
[12] Vakarchuk S. B., Vakarchuk M. B., “O priblizhenii funktsii algebraicheskimi polinomami v srednem na veschestvennoi osi s vesom Chebysheva-Ermita”, Vestn. Dnepropetrovsk. un-ta. Ser. matem., 19:14 (2011), 28–31