Mean-square approximation by ``angle'' in the space $L_{2,\mu}(\mathbb{R}^{2})$ with the Chebyshev--Hermite weight
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2021), pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L_{2,\mu}(\mathbb{R}^{2}), \ \mu(x,y)=\exp\{-(x^{2}+y^{2})\}, \ \mathbb{R}=(-\infty, +\infty), \ \mathbb{R}^{2}:=\mathbb{R}\times\mathbb{R}$ be the space of functions $f$, for which $\mu^{1/2}f\in L_{2}(\mathbb{R}^{2}).$ In the metric of space $L_{2,\mu}(\mathbb{R}^{2})$ the sharp inequalities of Jackson-Stechkin type which relate the best mean squared approximation by “angle” formed with an algebraic polynomials of two variables averaged with Chebyshev-Hermite weight $L_{\nu} \ (1\leq \nu\leq\infty)$ and norm of module of continuity $k$-th order by variable $x$ and $l$-th order by variable $y$ with derivatives ${\mathcal D}^{r}f,$ were obtained. ${\mathcal D}$ — is Chebyshev differential operator of second order of form $${\mathcal D}:=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}-2x\frac{\partial}{\partial x}-2y\frac{\partial}{\partial y}.$$
Keywords: the best approximation with “angle”, translation operator, weight function, Chebyshev-Hermite operator, generalized module of continuity.
@article{IVM_2021_9_a0,
     author = {M. O. Akobirshoev},
     title = {Mean-square approximation by ``angle'' in the space $L_{2,\mu}(\mathbb{R}^{2})$ with the {Chebyshev--Hermite} weight},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--12},
     publisher = {mathdoc},
     number = {9},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_9_a0/}
}
TY  - JOUR
AU  - M. O. Akobirshoev
TI  - Mean-square approximation by ``angle'' in the space $L_{2,\mu}(\mathbb{R}^{2})$ with the Chebyshev--Hermite weight
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 3
EP  - 12
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_9_a0/
LA  - ru
ID  - IVM_2021_9_a0
ER  - 
%0 Journal Article
%A M. O. Akobirshoev
%T Mean-square approximation by ``angle'' in the space $L_{2,\mu}(\mathbb{R}^{2})$ with the Chebyshev--Hermite weight
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 3-12
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_9_a0/
%G ru
%F IVM_2021_9_a0
M. O. Akobirshoev. Mean-square approximation by ``angle'' in the space $L_{2,\mu}(\mathbb{R}^{2})$ with the Chebyshev--Hermite weight. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2021), pp. 3-12. http://geodesic.mathdoc.fr/item/IVM_2021_9_a0/

[1] Potapov M. K., “O priblizhenii «uglom»”, Tr. konf. po konstrukt. teorii funkts. (Budapesht, 1971), 371–399 | Zbl

[2] Potapov M. K., “Priblizhenie «uglom» i teoremy vlozheniya”, Math. Balkanica, 1972, no. 2, 183–198 | Zbl

[3] Vakarchuk S. B., Shabozov M. Sh., “O tochnykh znacheniyakh kvazipoperechnikov nekotorykh funktsionalnykh klassov”, Ukr. matem. zhurn., 48:3 (1996), 301–308

[4] Shabozov M. Sh., Akobirshoev M. O., “Kvazipoperechniki nekotorykh klassov differentsiruemykh periodicheskikh funktsii dvukh peremennykh”, Dokl. RAN, 404:4 (2005), 406–464

[5] Shabozov M. Sh., Akobirshoev M. O., “Tochnye znacheniya kvazapoprechnikov nekotorykh klassov differentsiruemykh periodicheskikh funktsii dvukh peremennykh”, Anal. Math., 35:1 (2009), 61–72 | DOI | Zbl

[6] Vakarchuk S. B., Shvachko A. V., “O nailuchshem priblizhenii «uglom» v srednem na ploskosti $\mathbb{R}^{2}$ s vesom Chebysheva–Ermita”, Zbirnik prats In-tu matematiki NAN Ukraini, 11:1 (2014), 35–46 | Zbl

[7] Shabozov M. Sh., Akobirshoev M. O., “Srednekvadraticheskoe priblizhenie “uglom” v metrike $L_2$ i znacheniya kvazipoperechnikov nekotorykh klassov funktsii”, Ukr. matem. zhurn., 72:6 (2020), 852–864 | Zbl

[8] Abilov V. A., Abilova M. V., “Priblizhenie funktsii v prostranstve $L_{2}(\mathbb{R}^{N}; e^{-|x|^{2}})$”, Matem. zametki, 57:1 (1995), 3–19 | Zbl

[9] Suetin P. K., Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1979

[10] Rafalson S. Z., “O priblizhenii funktsii v srednem summami Fure-Ermita”, Izv. vuzov. Matem., 1968, no. 7, 78–84

[11] Abilov M. V., Abilova F. V., “Nekotorye voprosy priblizheniya funktsii summami Fure–Ermita v prostranstve $L_{2}(\mathbb{R}, e^{-x^{2}})$”, Izv. vuzov. Matem., 2006, no. 1, 3–12 | Zbl

[12] Vakarchuk S. B., Vakarchuk M. B., “O priblizhenii funktsii algebraicheskimi polinomami v srednem na veschestvennoi osi s vesom Chebysheva-Ermita”, Vestn. Dnepropetrovsk. un-ta. Ser. matem., 19:14 (2011), 28–31