Differences and commutators of idempotents in $C^*$-algebras
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2021), pp. 16-26

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish similarity between some tripotents and idempotents on a Hilbert space $\mathcal{H}$ and obtain new results on differences and commutators of idempotents $ P $ and $ Q $. In the unital case, the difference $ P-Q $ is associated with the difference $A_{P, Q}$ of another pair of idempotents. Let $\varphi $ be a trace on a unital $C^*$-algebra $\mathcal{A}$, $\mathfrak{M}_{\varphi} $ be the ideal of definition of the trace $\varphi $. If $ P-Q \in \mathfrak{M}_\varphi $, then $ A_{P, Q} \in \mathfrak {M}_\varphi $ and $ \varphi (A_{P, Q}) = \varphi (P-Q) \in \mathbb{R}$. In some cases, this allowed us to establish the equality $ \varphi (P-Q) = 0$. We obtain new identities for pairs of idempotents and for pairs of isoclinic projections. It is proved that each operator $ A \in \mathcal{B} (\mathcal{H}) $, $ \dim \mathcal{H} = \infty $, can be presented as a sum of no more than 50 commutators of idempotents from $ \mathcal{B} (\mathcal{H}) $. It is shown that the commutator of an idempotent and an arbitrary element from an algebra $ \mathcal{A} $ cannot be a nonzero idempotent. If $ \mathcal{H} $ is separable and $ \dim \mathcal{H} = \infty $, then each skew-Hermitian operator $ T \in \mathcal {B} (\mathcal{H}) $ can be represented as a sum $ T = \sum_{k = 1}^4 [A_k, B_k] $, where $ A_k, B_k \in \mathcal{B} (\mathcal {H}) $ are skew-Hermitian.
Keywords: Hilbert space, linear operator, idempotent, commutator, similarity, $C^*$-algebra, trace, determinant.
Mots-clés : tripotent, isoclinic projections
@article{IVM_2021_8_a1,
     author = {A. M. Bikchentaev and Kh. Fawwaz},
     title = {Differences and commutators of idempotents in $C^*$-algebras},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {16--26},
     publisher = {mathdoc},
     number = {8},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_8_a1/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
AU  - Kh. Fawwaz
TI  - Differences and commutators of idempotents in $C^*$-algebras
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 16
EP  - 26
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_8_a1/
LA  - ru
ID  - IVM_2021_8_a1
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%A Kh. Fawwaz
%T Differences and commutators of idempotents in $C^*$-algebras
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 16-26
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_8_a1/
%G ru
%F IVM_2021_8_a1
A. M. Bikchentaev; Kh. Fawwaz. Differences and commutators of idempotents in $C^*$-algebras. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2021), pp. 16-26. http://geodesic.mathdoc.fr/item/IVM_2021_8_a1/