Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2021_8_a1, author = {A. M. Bikchentaev and Kh. Fawwaz}, title = {Differences and commutators of idempotents in $C^*$-algebras}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {16--26}, publisher = {mathdoc}, number = {8}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2021_8_a1/} }
A. M. Bikchentaev; Kh. Fawwaz. Differences and commutators of idempotents in $C^*$-algebras. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2021), pp. 16-26. http://geodesic.mathdoc.fr/item/IVM_2021_8_a1/
[1] Koliha J. J., Rakočević V., “Invertibility of the difference of idempotents”, Linear Multilinear Algebra, 51:1 (2003), 97–110 | DOI | MR
[2] Koliha J. J., Rakočević V., Straškraba I., “The difference and sum of projectors”, Linear Algebra Appl., 388 (2004), 279–288 | DOI | MR | Zbl
[3] Koliha J. J., Rakočević V., “Fredholm properties of the difference of orhogonal projections in a Hilbert space”, Integral Equat. Oper. Theory, 52:1 (2005), 125–134 | DOI | MR | Zbl
[4] Bikchentaev A. M., “Sled i raznosti idempotentov v $C^*$-algebrakh”, Matem. zametki, 105:5 (2019), 647–655 | MR | Zbl
[5] Bikchentaev A. M., “Ob idempotentnykh $\tau$-izmerimykh operatorakh, prisoedinennykh k algebre fon Neimana”, Matem. zametki, 100:4 (2016), 492–503 | MR | Zbl
[6] Kalton N. J., “A note on pairs of projections”, Bol. Soc. Mat. Mexicana (3), 3:2 (1997), 309–311 | MR | Zbl
[7] Bikchentaev A. M., Yakushev R. S., “Representation of tripotents and representations via tripotents”, Linear Algebra Appl., 435:9 (2011), 2156–2165 | DOI | MR | Zbl
[8] Bikchentaev A. M., “Tripotents in algebras: invertibility and hyponormality”, Lobachevskii J. Math., 35:3 (2014), 281–285 | DOI | MR | Zbl
[9] Avron J., Seiler R., Simon B., “The index of a pair of projections”, J. Funct. Anal., 120:1 (1994), 220–237 | DOI | MR | Zbl
[10] Bikchentaev A. M., “Raznosti idempotentov v $C^*$-algebrakh”, Sib. matem. zhurn., 58:2 (2017), 243–250 | MR | Zbl
[11] Bellissard J., van Elst A., Schulz-Baldes H., “The noncommutative geometry of the quantum Hall effect. Topology and physics”, J. Math. Phys., 35:10 (1994), 5373–5451 | DOI | MR | Zbl
[12] Gesztesy F. (coordinating Editor), “From Mathematical Physics to Analysis: a walk in Barry Simon's Mathematical Garden, II”, Notices Amer. Math. Soc., 63:8 (2016), 878–889 | DOI | MR | Zbl
[13] Bikchentaev A. M., “Raznosti idempotentov v $C^*$-algebrakh i kvantovyi effekt Kholla”, TMF, 195:1 (2018), 75–80 | MR | Zbl
[14] Cuntz J., Pedersen G. K., “Equivalence and traces on $C^*$-algebras”, J. Funct. Anal., 33:2 (1979), 135–164 | DOI | MR | Zbl
[15] Fack T., “Finite sums of commutators in $C^*$-algebras”, Ann. Inst. Fourier, Grenoble, 32:1 (1982), 129–137 | DOI | MR | Zbl
[16] Glazman I. M., Lyubich Yu. I., Konechnomernyi lineinyi analiz, Nauka, M., 1969 | MR
[17] Davidson K. R., $C^*$-algebras by examples, Fields Institute Monographs, Amer. Math. Soc., Providence, Rhode Island, 1996 | MR | Zbl
[18] Pop C., “Finite sums of commutators”, Proc. Amer. Math. Soc., 130:10 (2002), 3039–3041 | DOI | MR | Zbl
[19] Merfi Dzh., $C^*$-algebry i teoriya operatorov, Faktorial, M., 1997
[20] Strătilă Ş, Zsidó L., Lectures on von Neumann algebras, Abacus Press, England, 1979 | MR | Zbl
[21] Williams J. P., “Operators similar to their adjoints”, Proc. Amer. Math. Soc., 20:1 (1969), 121–123 | DOI | MR | Zbl
[22] Koliha J. J., “Range projections of idempotents in $C^*$-algebras”, Demonstratio Math., 24:1 (2001), 91–103 | MR
[23] Kaplansky I., “Modules over operator algebras”, Amer. J. Math., 75:4 (1953), 839–858 | DOI | MR | Zbl
[24] Bikchentaev A. M., “O predstavlenii elementov algebry fon Neimana v vide konechnykh summ proizvedenii proektorov, III. Kommutatory v $C^*$-algebrakh”, Matem. sbornik, 199:4 (2008), 3–20 | MR | Zbl
[25] Sherstnev A. N., Metody bilineinykh form v nekommutativnoi teorii mery i integrala, Fizmatlit, M., 2008
[26] Pearcy C., Topping D. M., “Sums of small numbers of idempotents”, Mich. Math. J., 14:4 (1967), 453–465 | DOI | MR | Zbl
[27] Paszkiewicz A., “Any selfadjoint operator is a finite linear combination of projectors”, Bull. L'Acad. Polon. Sci., Sér. Sci. Math., 28:7–8 (1980), 337–345 | MR
[28] Khalmosh P., Gilbertovo prostranstvo v zadachakh, Mir, M., 1970
[29] Bikchentaev A. M., “O predstavlenii lineinykh operatorov v gilbertovom prostranstve v vide konechnykh summ proizvedenii proektorov”, DAN, 393:4 (2003), 444–447 | MR
[30] Bikchentaev A. M., “O predstavlenii elementov algebry fon Neimana v vide konechnykh summ proizvedenii proektorov”, Sib. matem. zhurn., 46:1 (2005), 32–45 | MR | Zbl
[31] Bikchentaev A. M., “Perestanovochnost proektorov i kharakterizatsiya sleda na algebrakh fon Neimana”, Sib. matem. zhurn., 51:6 (2010), 1228–1236 | MR | Zbl
[32] Bikchentaev A. M., “O skhodimosti integriruemykh operatorov, prisoedinennykh k konechnoi algebre fon Neimana”, Tr. MIAN, 293, 2016, 73–82 | Zbl