Differences and commutators of idempotents in $C^*$-algebras
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2021), pp. 16-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish similarity between some tripotents and idempotents on a Hilbert space $\mathcal{H}$ and obtain new results on differences and commutators of idempotents $ P $ and $ Q $. In the unital case, the difference $ P-Q $ is associated with the difference $A_{P, Q}$ of another pair of idempotents. Let $\varphi $ be a trace on a unital $C^*$-algebra $\mathcal{A}$, $\mathfrak{M}_{\varphi} $ be the ideal of definition of the trace $\varphi $. If $ P-Q \in \mathfrak{M}_\varphi $, then $ A_{P, Q} \in \mathfrak {M}_\varphi $ and $ \varphi (A_{P, Q}) = \varphi (P-Q) \in \mathbb{R}$. In some cases, this allowed us to establish the equality $ \varphi (P-Q) = 0$. We obtain new identities for pairs of idempotents and for pairs of isoclinic projections. It is proved that each operator $ A \in \mathcal{B} (\mathcal{H}) $, $ \dim \mathcal{H} = \infty $, can be presented as a sum of no more than 50 commutators of idempotents from $ \mathcal{B} (\mathcal{H}) $. It is shown that the commutator of an idempotent and an arbitrary element from an algebra $ \mathcal{A} $ cannot be a nonzero idempotent. If $ \mathcal{H} $ is separable and $ \dim \mathcal{H} = \infty $, then each skew-Hermitian operator $ T \in \mathcal {B} (\mathcal{H}) $ can be represented as a sum $ T = \sum_{k = 1}^4 [A_k, B_k] $, where $ A_k, B_k \in \mathcal{B} (\mathcal {H}) $ are skew-Hermitian.
Keywords: Hilbert space, linear operator, idempotent, commutator, similarity, $C^*$-algebra, trace, determinant.
Mots-clés : tripotent, isoclinic projections
@article{IVM_2021_8_a1,
     author = {A. M. Bikchentaev and Kh. Fawwaz},
     title = {Differences and commutators of idempotents in $C^*$-algebras},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {16--26},
     publisher = {mathdoc},
     number = {8},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_8_a1/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
AU  - Kh. Fawwaz
TI  - Differences and commutators of idempotents in $C^*$-algebras
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 16
EP  - 26
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_8_a1/
LA  - ru
ID  - IVM_2021_8_a1
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%A Kh. Fawwaz
%T Differences and commutators of idempotents in $C^*$-algebras
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 16-26
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_8_a1/
%G ru
%F IVM_2021_8_a1
A. M. Bikchentaev; Kh. Fawwaz. Differences and commutators of idempotents in $C^*$-algebras. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2021), pp. 16-26. http://geodesic.mathdoc.fr/item/IVM_2021_8_a1/

[1] Koliha J. J., Rakočević V., “Invertibility of the difference of idempotents”, Linear Multilinear Algebra, 51:1 (2003), 97–110 | DOI | MR

[2] Koliha J. J., Rakočević V., Straškraba I., “The difference and sum of projectors”, Linear Algebra Appl., 388 (2004), 279–288 | DOI | MR | Zbl

[3] Koliha J. J., Rakočević V., “Fredholm properties of the difference of orhogonal projections in a Hilbert space”, Integral Equat. Oper. Theory, 52:1 (2005), 125–134 | DOI | MR | Zbl

[4] Bikchentaev A. M., “Sled i raznosti idempotentov v $C^*$-algebrakh”, Matem. zametki, 105:5 (2019), 647–655 | MR | Zbl

[5] Bikchentaev A. M., “Ob idempotentnykh $\tau$-izmerimykh operatorakh, prisoedinennykh k algebre fon Neimana”, Matem. zametki, 100:4 (2016), 492–503 | MR | Zbl

[6] Kalton N. J., “A note on pairs of projections”, Bol. Soc. Mat. Mexicana (3), 3:2 (1997), 309–311 | MR | Zbl

[7] Bikchentaev A. M., Yakushev R. S., “Representation of tripotents and representations via tripotents”, Linear Algebra Appl., 435:9 (2011), 2156–2165 | DOI | MR | Zbl

[8] Bikchentaev A. M., “Tripotents in algebras: invertibility and hyponormality”, Lobachevskii J. Math., 35:3 (2014), 281–285 | DOI | MR | Zbl

[9] Avron J., Seiler R., Simon B., “The index of a pair of projections”, J. Funct. Anal., 120:1 (1994), 220–237 | DOI | MR | Zbl

[10] Bikchentaev A. M., “Raznosti idempotentov v $C^*$-algebrakh”, Sib. matem. zhurn., 58:2 (2017), 243–250 | MR | Zbl

[11] Bellissard J., van Elst A., Schulz-Baldes H., “The noncommutative geometry of the quantum Hall effect. Topology and physics”, J. Math. Phys., 35:10 (1994), 5373–5451 | DOI | MR | Zbl

[12] Gesztesy F. (coordinating Editor), “From Mathematical Physics to Analysis: a walk in Barry Simon's Mathematical Garden, II”, Notices Amer. Math. Soc., 63:8 (2016), 878–889 | DOI | MR | Zbl

[13] Bikchentaev A. M., “Raznosti idempotentov v $C^*$-algebrakh i kvantovyi effekt Kholla”, TMF, 195:1 (2018), 75–80 | MR | Zbl

[14] Cuntz J., Pedersen G. K., “Equivalence and traces on $C^*$-algebras”, J. Funct. Anal., 33:2 (1979), 135–164 | DOI | MR | Zbl

[15] Fack T., “Finite sums of commutators in $C^*$-algebras”, Ann. Inst. Fourier, Grenoble, 32:1 (1982), 129–137 | DOI | MR | Zbl

[16] Glazman I. M., Lyubich Yu. I., Konechnomernyi lineinyi analiz, Nauka, M., 1969 | MR

[17] Davidson K. R., $C^*$-algebras by examples, Fields Institute Monographs, Amer. Math. Soc., Providence, Rhode Island, 1996 | MR | Zbl

[18] Pop C., “Finite sums of commutators”, Proc. Amer. Math. Soc., 130:10 (2002), 3039–3041 | DOI | MR | Zbl

[19] Merfi Dzh., $C^*$-algebry i teoriya operatorov, Faktorial, M., 1997

[20] Strătilă Ş, Zsidó L., Lectures on von Neumann algebras, Abacus Press, England, 1979 | MR | Zbl

[21] Williams J. P., “Operators similar to their adjoints”, Proc. Amer. Math. Soc., 20:1 (1969), 121–123 | DOI | MR | Zbl

[22] Koliha J. J., “Range projections of idempotents in $C^*$-algebras”, Demonstratio Math., 24:1 (2001), 91–103 | MR

[23] Kaplansky I., “Modules over operator algebras”, Amer. J. Math., 75:4 (1953), 839–858 | DOI | MR | Zbl

[24] Bikchentaev A. M., “O predstavlenii elementov algebry fon Neimana v vide konechnykh summ proizvedenii proektorov, III. Kommutatory v $C^*$-algebrakh”, Matem. sbornik, 199:4 (2008), 3–20 | MR | Zbl

[25] Sherstnev A. N., Metody bilineinykh form v nekommutativnoi teorii mery i integrala, Fizmatlit, M., 2008

[26] Pearcy C., Topping D. M., “Sums of small numbers of idempotents”, Mich. Math. J., 14:4 (1967), 453–465 | DOI | MR | Zbl

[27] Paszkiewicz A., “Any selfadjoint operator is a finite linear combination of projectors”, Bull. L'Acad. Polon. Sci., Sér. Sci. Math., 28:7–8 (1980), 337–345 | MR

[28] Khalmosh P., Gilbertovo prostranstvo v zadachakh, Mir, M., 1970

[29] Bikchentaev A. M., “O predstavlenii lineinykh operatorov v gilbertovom prostranstve v vide konechnykh summ proizvedenii proektorov”, DAN, 393:4 (2003), 444–447 | MR

[30] Bikchentaev A. M., “O predstavlenii elementov algebry fon Neimana v vide konechnykh summ proizvedenii proektorov”, Sib. matem. zhurn., 46:1 (2005), 32–45 | MR | Zbl

[31] Bikchentaev A. M., “Perestanovochnost proektorov i kharakterizatsiya sleda na algebrakh fon Neimana”, Sib. matem. zhurn., 51:6 (2010), 1228–1236 | MR | Zbl

[32] Bikchentaev A. M., “O skhodimosti integriruemykh operatorov, prisoedinennykh k konechnoi algebre fon Neimana”, Tr. MIAN, 293, 2016, 73–82 | Zbl