Inequality of Schwarz type for holomorphic self-maps of a disc with fixed points
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2021), pp. 43-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the class of holomorphic functions that mapping the unit disc into itself and having an inner and two boundary fixed points, the exact set of the values of derivative at zero in terms of the angular derivatives at the boundary fixed points is given. As a corollary in the class of such functions a disc of univalence with center at zero is found.
Keywords: holomorphic mapping, fixed point, angular derivative, Schwarz inequality
Mots-clés : domain of univalence.
@article{IVM_2021_7_a4,
     author = {O. S. Kudryavtseva},
     title = {Inequality of {Schwarz} type for holomorphic self-maps of a disc with fixed points},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {43--51},
     publisher = {mathdoc},
     number = {7},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_7_a4/}
}
TY  - JOUR
AU  - O. S. Kudryavtseva
TI  - Inequality of Schwarz type for holomorphic self-maps of a disc with fixed points
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 43
EP  - 51
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_7_a4/
LA  - ru
ID  - IVM_2021_7_a4
ER  - 
%0 Journal Article
%A O. S. Kudryavtseva
%T Inequality of Schwarz type for holomorphic self-maps of a disc with fixed points
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 43-51
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_7_a4/
%G ru
%F IVM_2021_7_a4
O. S. Kudryavtseva. Inequality of Schwarz type for holomorphic self-maps of a disc with fixed points. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2021), pp. 43-51. http://geodesic.mathdoc.fr/item/IVM_2021_7_a4/

[1] Ahlfors L. V., Conformal invariants: Topics in geometric function theory, McGraw-Hill Book Company, New York, 1973 | MR | Zbl

[2] Unkelbach H., “Über die Randverzerrung bei konformer Abbildung”, Math. Zeitschr., 43 (1938), 739–742 | DOI | MR

[3] Osserman R., “A sharp Schwarz inequality on the boundary”, Proc. Amer. Math. Soc., 128 (2000), 3513–3517 | DOI | MR | Zbl

[4] Goryainov V. V., “Golomorfnye otobrazheniya edinichnogo kruga v sebya s dvumya nepodvizhnymi tochkami”, Matem. sb., 208:3 (2017), 54–71 | MR | Zbl

[5] Cowen C. C., Pommerenke Ch., “Inequalities for the angular derivative of an analytic function in the unit disk”, J. London Math. Soc., 26:2 (1982), 271–289 | DOI | MR | Zbl

[6] Anderson J.M, Vasil'ev A., “Lower Schwarz-Pick estimates and angular derivatives”, Ann. Acad. Sci. Fenn. Math., 33:1 (2008), 101–110 | MR | Zbl

[7] Kudryavtseva O. S., “Golomorfnye otobrazheniya kruga v sebya s invariantnym diametrom i ogranichennym iskazheniem”, Izv. vuzov. Matem., 59:8 (2015), 51–63 | Zbl

[8] Kudryavtseva O. S., “Analog uravneniya Levnera– Kufareva dlya polugruppy konformnykh otobrazhenii kruga v sebya s nepodvizhnymi tochkami i invariantnym diametrom”, Matem. zametki, 102:2 (2017), 316–320 | Zbl

[9] Landau E., “Der Picard– Schottkysche Satz und die Blochsche Konstante”, Sitzungsber. Preuss. Akad. Wiss. Berlin, Phys.-Math. Kl., 32 (1926), 467–474

[10] Kudryavtseva O. S., Solodov A. P., “Dvustoronnie otsenki oblastei odnolistnosti klassov golomorfnykh otobrazhenii kruga v sebya s dvumya nepodvizhnymi tochkami”, Matem. sb., 210:7 (2019), 120–144 | MR | Zbl

[11] Solodov A. P., “Usilenie teoremy Landau dlya golomorfnykh otobrazhenii kruga v sebya s nepodvizhnymi tochkami”, Matem. zametki, 108:4 (2020), 638–640 | MR | Zbl

[12] Kudryavtseva O. S., Solodov A. P., “Asimptoticheski tochnaya dvustoronnyaya otsenka oblastei odnolistnosti golomorfnykh otobrazhenii kruga v sebya s invariantnym diametrom”, Matem. sb., 211:11 (2020), 96–117 | MR | Zbl