Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2021_7_a4, author = {O. S. Kudryavtseva}, title = {Inequality of {Schwarz} type for holomorphic self-maps of a disc with fixed points}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {43--51}, publisher = {mathdoc}, number = {7}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2021_7_a4/} }
TY - JOUR AU - O. S. Kudryavtseva TI - Inequality of Schwarz type for holomorphic self-maps of a disc with fixed points JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2021 SP - 43 EP - 51 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2021_7_a4/ LA - ru ID - IVM_2021_7_a4 ER -
O. S. Kudryavtseva. Inequality of Schwarz type for holomorphic self-maps of a disc with fixed points. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2021), pp. 43-51. http://geodesic.mathdoc.fr/item/IVM_2021_7_a4/
[1] Ahlfors L. V., Conformal invariants: Topics in geometric function theory, McGraw-Hill Book Company, New York, 1973 | MR | Zbl
[2] Unkelbach H., “Über die Randverzerrung bei konformer Abbildung”, Math. Zeitschr., 43 (1938), 739–742 | DOI | MR
[3] Osserman R., “A sharp Schwarz inequality on the boundary”, Proc. Amer. Math. Soc., 128 (2000), 3513–3517 | DOI | MR | Zbl
[4] Goryainov V. V., “Golomorfnye otobrazheniya edinichnogo kruga v sebya s dvumya nepodvizhnymi tochkami”, Matem. sb., 208:3 (2017), 54–71 | MR | Zbl
[5] Cowen C. C., Pommerenke Ch., “Inequalities for the angular derivative of an analytic function in the unit disk”, J. London Math. Soc., 26:2 (1982), 271–289 | DOI | MR | Zbl
[6] Anderson J.M, Vasil'ev A., “Lower Schwarz-Pick estimates and angular derivatives”, Ann. Acad. Sci. Fenn. Math., 33:1 (2008), 101–110 | MR | Zbl
[7] Kudryavtseva O. S., “Golomorfnye otobrazheniya kruga v sebya s invariantnym diametrom i ogranichennym iskazheniem”, Izv. vuzov. Matem., 59:8 (2015), 51–63 | Zbl
[8] Kudryavtseva O. S., “Analog uravneniya Levnera– Kufareva dlya polugruppy konformnykh otobrazhenii kruga v sebya s nepodvizhnymi tochkami i invariantnym diametrom”, Matem. zametki, 102:2 (2017), 316–320 | Zbl
[9] Landau E., “Der Picard– Schottkysche Satz und die Blochsche Konstante”, Sitzungsber. Preuss. Akad. Wiss. Berlin, Phys.-Math. Kl., 32 (1926), 467–474
[10] Kudryavtseva O. S., Solodov A. P., “Dvustoronnie otsenki oblastei odnolistnosti klassov golomorfnykh otobrazhenii kruga v sebya s dvumya nepodvizhnymi tochkami”, Matem. sb., 210:7 (2019), 120–144 | MR | Zbl
[11] Solodov A. P., “Usilenie teoremy Landau dlya golomorfnykh otobrazhenii kruga v sebya s nepodvizhnymi tochkami”, Matem. zametki, 108:4 (2020), 638–640 | MR | Zbl
[12] Kudryavtseva O. S., Solodov A. P., “Asimptoticheski tochnaya dvustoronnyaya otsenka oblastei odnolistnosti golomorfnykh otobrazhenii kruga v sebya s invariantnym diametrom”, Matem. sb., 211:11 (2020), 96–117 | MR | Zbl