Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2021_7_a1, author = {N. V. Burmasheva and E. Yu. Prosviryakov}, title = {Exact solutions for steady convective layered flows with a spatial acceleration}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {12--22}, publisher = {mathdoc}, number = {7}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2021_7_a1/} }
TY - JOUR AU - N. V. Burmasheva AU - E. Yu. Prosviryakov TI - Exact solutions for steady convective layered flows with a spatial acceleration JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2021 SP - 12 EP - 22 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2021_7_a1/ LA - ru ID - IVM_2021_7_a1 ER -
N. V. Burmasheva; E. Yu. Prosviryakov. Exact solutions for steady convective layered flows with a spatial acceleration. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2021), pp. 12-22. http://geodesic.mathdoc.fr/item/IVM_2021_7_a1/
[1] Gershuni G. Z., Zhukhovitskii E. M., Nepomnyaschii A. A., Ustoichivost konvektivnykh techenii, Nauka, M., 1989 | MR
[2] Landau L. D., Lifshits E. M., Gidrodinamika, 6-e izd., Fizmatlit, M., 2006
[3] Burmasheva N. V., Prosviryakov E. Yu., “Krupnomasshtabnaya sloistaya statsionarnaya konvektsiya vyazkoi neszhimaemoi zhidkosti pod deistviem kasatelnykh napryazhenii na verkhnei granitse. Issledovanie polya skorostei”, Vestn. Samarsk. gos. tekh. un-ta, Ser. fiz.-matem. nauki, 21:1 (2017), 180–196
[4] Burmasheva N. V., Prosviryakov E. Yu., “Krupnomasshtabnaya sloistaya statsionarnaya konvektsiya vyazkoi neszhimaemoi zhidkosti pod deistviem kasatelnykh napryazhenii na verkhnei granitse. Issledovanie polei temperatury i davleniya”, Vestn. Samarsk. gos. tekh. un-ta, Ser. fiz.-matem. nauki, 21:4 (2017), 736–751 | Zbl
[5] Prosviryakov E.Yu., “Non-helical exact solutions to the Euler equations for swirling axisymmetric fluid flows”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki, 23:4 (2019), 764–770 | DOI | Zbl
[6] Burmasheva N. V., Prosviryakov E. Yu., “Termokapillyarnaya konvektsiya vertikalno zavikhrennoi zhidkosti”, Teor. osn. khim. tekhn., 54:1 (2020), 114–124 | MR
[7] Pukhnachev V. V., “Ierarkhiya modelei v teorii konvektsii”, Zap. nauchn. sem. POMI, 288, S.-Peterburg, 2002, 152–177 | Zbl
[8] Hillebrandt W., Müller E., Springel V., “Numerical fluid dynamics in astrophysics”, v. 100, Notes on numerical fluid mechanics and multidisciplinary design, Springer, Berlin–Heidelberg, 2009, 409–420 | DOI
[9] Wölbing R., Baschung B., “Three-dimensional numerical fluid flow simulation of the interior and transitional ballistics process”, Proceedings of $31$ International Symposium on Ballistics (Hyderabad, India, November $4$–$8$, $2019$), ed. Dr. V.K. Saraswat, The Aeronautical Society of India (Hyderabad Branch), The International Ballistics Society, Hyderabad, 2019
[10] Childs E., “The sonification of numerical fluid flow simulations”, Proceedings of the $7$th International Conference on Auditory Display, ICAD2001 (Espoo, Finland, July $29$–August $1$, $2001$), eds. J. Hiipakka, N. Zacharov, T. Takala, International Community for Auditory Display, Espoo, 2001
[11] Severin T., Brück T., Weuster-Botz D., “Validated numerical fluid simulation of a thin-layer cascade photobioreactor in OpenFOAM”, Engineer. in life sci., 19:2 (2019), 97–103 | DOI
[12] Abe H., Kawamura H., Matsuo Yu., “Direct numerical simulation of a fully developed turbulent channel flow with respect to the Reynolds number dependence”, Trans. of the ASME, 123 (2001), 382–393
[13] Wang X., Wache P., Navidbakhsh M., Lucius M., Stoltz J. F., “Three-dimensional numerical simulation of blood flow through a modeled aneurysm”, Rus. J. of Biomech., 1 (1999), 26–36
[14] Joseph D. D., Stability of fluid motions, Springer-Verlag, Berlin–Heidelberg–New York, 1976 | MR
[15] Monin A. S., Teoreticheskie osnovy geofizicheskoi gidrodinamiki, Gidrometeoizdat, L., 1988
[16] Pedloski Dzh., Geofizicheskaya gidrodinamika, Mir, M., 1984
[17] Reinhart W., Häusler K., Schaller P., Erhart S., Stetter M., Dual J., Sayir M., “Rheological properties of blood as assessed with a newly designed oscillating viscometer”, Clinic. hemorheol. and microcircul., 18 (1998), 59–65
[18] Skadsem H., Saasen A., “Concentric cylinder viscometer flows of Herschel-Bulkley fluid”, Appl. rheol., 29 (2019), 173–181 | DOI
[19] Scherson D. A., Tolmachev Yu., Wang Zh., Wang J., Palencsar A., “Extensions of the Koutecky–Levich equation to channel electrodes”, Electrochem. and solid state lett., 11:2 (2007)
[20] Kanzaki Ya., Tokuda K., Bruckenstein S., “Dissociation rates of weak acids using sinusoidal hydrodynamic modulated rotating disk electrode employing Koutecky–Levich equation”, J. of the Electrochem. Soc., 161:12 (2014), H770–H779 | DOI
[21] Treimer S., Tang A., Johnson D. C., “A Consideration of the application of Koutecky–Levich plots in the diagnoses of charge-transfer mechanisms at rotated disk electrodes”, Electroanalysis, 14:3 (2002), 165–171 | 3.0.CO;2-6 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI
[22] Miranda D., Knook M., Paalvast F., Rossi A., Hop W., Oei F., van Bommel J., Gommers D., “Experimental validation of frequent used echocardiographic right ventricular impedance parameters”, Minerva anestesiologica, 80:11 (2014), 1169–1177
[23] Lin C. C., “Note on a class of exact solutions in magneto-hydrodynamics”, Arch. for Rational Mech. and Anal., 1 (1958), 391–395 | DOI | MR | Zbl
[24] Frolovskaya O. A., Pukhnachev V. V., “Analysis of the models of motion of aqueous solutions of polymers on the basis of their exact solutions”, Polymers, 10:6 (2018), 684-1–684-13 | DOI | MR
[25] Desale B., Vivek Sharma, “Exact solutions superimposed with nonlinear plane waves”, Int. J. of Different. Equat., 2016 (2016), 1846341-1–1846341-7 | MR
[26] Burmasheva N. V., Prosviryakov E. Yu., “Tochnoe reshenie uravnenii Nave–Stoksa, opisyvayuschee prostranstvenno neodnorodnye techeniya vraschayuscheisya zhidkosti”, Tr. In-ta matem. i mekhan. UrO RAN, 26, no. 2, 2020, 79–87 | MR
[27] Burmasheva N. V., Prosviryakov E. Yu., “Klass tochnykh reshenii dlya dvumernykh uravnenii geofizicheskoi gidrodinamiki s dvumya parametrami Koriolisa”, Izv. Irkutsk. gos. un-ta, Ser. Matem., 32 (2020), 33–48 | MR | Zbl
[28] Aristov S. N., Prosviryakov E. Yu., “Krupnomasshtabnye techeniya zavikhrennoi vyazkoi neszhimaemoi zhidkosti”, Izv. vuzov. Aviatsionnaya tekhn., 2015, no. 4, 50–54
[29] Aristov S. N., Prosviryakov E. Yu., “Neodnorodnye techeniya Kuetta”, Nelin. dinam., 10:2 (2014), 177–182 | Zbl
[30] Zubarev N. M., Prosviryakov E. Yu., “O tochnykh resheniyakh dlya sloistykh trekhmernykh nestatsionarnykh izobaricheskikh techenii vyazkoi neszhimaemoi zhidkosti”, Prikl. mekhan. i tekhn. fiz., 60:6 (2019), 65–71 | Zbl
[31] Varsakelis Ch., Papalexandris M., “Existence of solutions to a continuum model for hydrostatics of fluid-saturated granular materials”, Appl. Math. Lett., 35 (2014), 77–81 | DOI | MR | Zbl
[32] Berker R., Sur quelques cas d'integration des equations du movement d'un fluide visqueux incompressible, Lille–Paris, 1936 | MR
[33] Shmyglevskii Yu. D., “Ob izobaricheskikh ploskikh techeniyakh vyazkoi neszhimaemoi zhidkosti”, Zhurn. vychisl. matem. i matem. fiziki, 25:12 (1985), 1895–1898 | MR | Zbl
[34] Privalova V. V., Prosviryakov E. Yu., “Nelineinoe izobaricheskoe techenie vyazkoi neszhimaemoi zhidkosti v tonkom sloe s pronitsaemymi granitsami”, Vychisl. mekh. sploshnykh sred, 12:2 (2019), 230–242 | MR
[35] Troncoso J., “Isobaric heat capacity of ionic liquids in aqueous solutions. A review”, J. Chem. Eng. Data, 64:11 (2019), 4611–4618 | DOI
[36] Gorshkov A., Prosviryakov E., “Isobaric vortex flow of a viscous incompressible fluid with the Navier boundary condition”, AIP Conf. Proc., 2053 (2018), 040030-1–040030-5 | DOI
[37] Privalova V. V., Prosviryakov E.Yu., “An inhomogeneous Couette-type flow with a perfect slip condition at the lower boundary of an infinite fluid layer”, AIP Conf. Proc., 2176 (2019), 030012-1–030012-4 | DOI
[38] Sidorov A. F., “O dvukh klassakh reshenii uravnenii mekhaniki zhidkosti i gaza i ikh svyazi s teoriei beguschikh voln”, Prikl. mekhan. i tekhn. fiz., 2 (1989), 34–40
[39] Aristov S. N., Prosviryakov E. Yu., “Novyi klass tochnykh reshenii trekhmernykh uravnenii termodiffuzii”, Teor. osn. khim. tekhn., 50:3 (2016), 294–301
[40] Prosviryakov E. Yu., “Novyi klass tochnykh reshenii uravnenii Nave–Stoksa so stepennoi zavisimostyu skorostei ot dvukh prostranstvennykh koordinat”, Teor. osn. khim. tekhn., 53:1 (2019), 112–120
[41] Aristov S. N., Prosviryakov E. Yu., “Neodnorodnoe konvektivnoe techenie Kuetta”, Izv. RAN. MZhG, 2016, no. 5, 3–9 | Zbl