Strong solutions of one model of dynamics of thermoviscoelasticity of a continuous medium with memory
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2021), pp. 95-101.

Voir la notice de l'article provenant de la source Math-Net.Ru

A system of equations of dynamics of a thermoviscoelastic continuous medium with an Oldroyd-type rheological relation, which is a generalization of the Navier-Stokes-Fourier system, is considered. In the planar case the existence and uniqueness of strong solutions are established. The proof is based on the construction the Galerkin approximations and their strong estimates which provide the corresponding limit passage.
Keywords: Navier-Stokes-Fourier equation, Oldroid model, strong solution, thermoviscoelastic continuous medium, apriori estimates.
@article{IVM_2021_6_a8,
     author = {V. G. Zvyagin and V. P. Orlov},
     title = {Strong solutions of one model of dynamics of thermoviscoelasticity of a continuous medium with memory},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {95--101},
     publisher = {mathdoc},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_6_a8/}
}
TY  - JOUR
AU  - V. G. Zvyagin
AU  - V. P. Orlov
TI  - Strong solutions of one model of dynamics of thermoviscoelasticity of a continuous medium with memory
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 95
EP  - 101
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_6_a8/
LA  - ru
ID  - IVM_2021_6_a8
ER  - 
%0 Journal Article
%A V. G. Zvyagin
%A V. P. Orlov
%T Strong solutions of one model of dynamics of thermoviscoelasticity of a continuous medium with memory
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 95-101
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_6_a8/
%G ru
%F IVM_2021_6_a8
V. G. Zvyagin; V. P. Orlov. Strong solutions of one model of dynamics of thermoviscoelasticity of a continuous medium with memory. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2021), pp. 95-101. http://geodesic.mathdoc.fr/item/IVM_2021_6_a8/

[1] Orlov V. P., Parshin M. I., Zvyagin V. G., “On strong solutions for a Navier-Stokes-Fourier-Oldroid system”, Contemp. Anal. Appl. Math., 2:2 (2014), 277–289 | MR | Zbl

[2] Consiglieri L., “Regularity for the Navier-Stokes-Fourier system”, Diff. Equat. Appl., 4:1 (2009), 583–604 | MR | Zbl

[3] Orlov V. P., Parshin M. I., “Ob odnoi zadache dinamiki termovyazkouprugosti sredy tipa Oldroita”, Izv. vuzov. Matem., 2014, no. 5, 68–74 | Zbl

[4] Orlov V. P., Parshin M. I., “Ob odnoi zadache dinamiki termovyazkouprugoi sredy s pamyatyu”, Zhurn. vychisl. matem. i matem. fiziki, 55:4 (2015), 653–668 | Zbl

[5] Agranovich Yu. Ya., Sobolevskii P. E., “Issledovanie matematicheskikh modelei vyazkouprugikh zhidkostei”, DAN USSR, ser. A, 1989, no. 10, 71–74

[6] Agranovich Yu. Ya., Sobolevskii P. E., “Issledovanie slabykh reshenii modeli Oldroida vyazkouprugoi zhidkosti”, Kachestvennye metody issl. operatornykh uravnenii, Yaroslavl, 1991, 39–43 | Zbl

[7] Tribel Kh., Teoriya interpolyatsii. Funktsionalnye prostranstva. Differentsialnye operatory, Mir, M., 1980

[8] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970

[9] Temam R., Uravnenie Nave–Stoksa, Mir, M., 1981

[10] Simon J., “Compact sets in the space $L^p(0,T;B)$”, Ann. Math. Pure Appl., 146 (1988), 65–96 | DOI | MR