$k$-good formal matrix rings of infinite order
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2021), pp. 35-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $k$ be an integer that is greater than or equal to $2$. The ring $R$ is said to be $k$-good if every element of $R$ is the sum of $k$ invertible elements of $R$. We have showed that the ring of formal row-finite matrices will be $k$-good if all rings from its main diagonal are $k$-good. Also some applications of this result are given, particularly to the problem of $k$-goodness of the ring of endomorphisms of decomposable module or Abelian group.
Keywords: $k$-good element, $k$-good ring, ring of formal matrices of infinite order.
@article{IVM_2021_6_a3,
     author = {P. A. Krylov and Ts. D. Norbosambuev},
     title = {$k$-good formal matrix rings of infinite order},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {35--42},
     publisher = {mathdoc},
     number = {6},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_6_a3/}
}
TY  - JOUR
AU  - P. A. Krylov
AU  - Ts. D. Norbosambuev
TI  - $k$-good formal matrix rings of infinite order
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 35
EP  - 42
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_6_a3/
LA  - ru
ID  - IVM_2021_6_a3
ER  - 
%0 Journal Article
%A P. A. Krylov
%A Ts. D. Norbosambuev
%T $k$-good formal matrix rings of infinite order
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 35-42
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_6_a3/
%G ru
%F IVM_2021_6_a3
P. A. Krylov; Ts. D. Norbosambuev. $k$-good formal matrix rings of infinite order. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2021), pp. 35-42. http://geodesic.mathdoc.fr/item/IVM_2021_6_a3/

[1] Wolfson K. G., “An ideal theoretic characterization of the ring of all linear transformations”, Amer. J. Math., 75:2 (1953), 358–386 | DOI | MR | Zbl

[2] Zelinsky D., “Every linear transformation is a sum of non-singular ones”, Proc. Amer. Math. Soc., 5:4 (1954), 627–630 | DOI | MR | Zbl

[3] Skornyakov L. A., Complemented modular lattices and regular rings, Oliver$\$Boyd, Edinburgh, 1963 | MR

[4] Srivastava A. K., “A survey of rings generated by units”, Ann. de la faculte des sci. de Toulouse Math., 6:19 (2010), 203–213 | MR | Zbl

[5] Goldsmith B., Meehan C., “On unit sum numbers of rational groups”, Rocky Mountain J. Math., 32:4 (2002), 1431–1450 | MR | Zbl

[6] Goldsmith B., Meehan C., Wallutis S. L., “Torsion-free groups and modules with involution property”, J. Pure Appl. Algebra, 208:1 (2007), 127–134 | DOI | MR | Zbl

[7] Goldsmith B., Pabst S., Scott A., “Unit sum number of rings and modules”, Quarth. J. Math., 49:3 (1998), 331–344 | DOI | MR | Zbl

[8] Henriksen M., “Two classes of rings generated by their units”, J. Algebra, 31:1 (1974), 182–193 | DOI | MR | Zbl

[9] Vāmos P., “2-good rings”, Quart. J. Math., 56:3 (2005), 417–430 | DOI | MR

[10] Norbosambuev Ts. D., “O summakh diagonalnykh i obratimykh obobschennykh matrits”, Vestn. Tomsk. gos. un-ta. Matem. i mekhan., 36:4 (2015), 34–40

[11] Fuchs L., “Recent results and problems on Abelian groups”, Topics in Abelian groups, Chicago, 1963, 9–40 | MR

[12] Krylov P. A., Tuganbaev A. A., Tsarev A. V., “$sp$-gruppy i ikh koltsa endomorfizmov”, Itogi nauki i tekhn. Ser. Sovrem. matem. i ee prilozh. Temat. obz., 159, 2019, 68–110

[13] Strüngman L., Does the automorphism group generate the endomorphism ring in $Rep(S,R)$?, J. Algebra, 231 (2000), 163–179 | DOI | MR | Zbl

[14] Krylov P. A., “Summy avtomorfizmov abelevykh grupp i radikal Dzhekobsona koltsa endomorfizmov”, Izv. vuzov. Matem., 1976, no. 4, 56–66 | Zbl

[15] Meehan C., “Sums of automorphism groups and modules”, Math. Proc. Royal Irish Acad., 104 (2004), 59–66 | DOI | MR

[16] Krylov P., Tuganbaev A., Formal Matrices, Springer, Cham, 2017 | MR | Zbl

[17] Krylov P. A., Mikhalev A. B., Tuganbaev A. A., Endomorphism Rings of Abelian Groups, Springer-Verlag, Boston-London, 2003 | MR