On combinatorial geometric flows of two dimensional surfaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2021), pp. 78-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note we discuss several versions of discrete Ricci flow on closed two dimensional surfaces. As it was shown by Hamilton and Chow, on a closed surface the Ricci flow converges to the metric of constant curvature for any initial metric. Discrete version of the Ricci flow introduced by Chow and Luo has the same property. This discretization is defined for so called circle packing metrics. We discuss two directions in which results of Chow–Luo are generalized. On the other hand, straightforward discretization of the Ricci flow on surfaces, which uses a collection of lengths of edges as a metric, for certain initial conditions does not converge to the metric of constant curvature. We give corresponding examples. Moreover, straightforward discretization of the Ricci flow is proved to be equivalent to the combinatorial Yamabe flow on surfaces, introduced by Luo. Also we discuss generalization of the combinatorial Yamabe flow and its equivalent Ricci flow. In this generalization the vertices of the triangulation are equipped with weights, describing certain inhomogeneity of the surface in response to the tension given by the curvature Based on a large number of numerical experiments, certain conjectures about the behaviour of the solutions of the generalized Yamabe flow are proposed.
Keywords: combinatorial Yamabe flow, combinatorial Ricci flow, circle packing.
@article{IVM_2021_5_a9,
     author = {R. Yu. Pepa and F. Yu. Popelensky},
     title = {On combinatorial geometric flows of two dimensional surfaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {78--88},
     publisher = {mathdoc},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_5_a9/}
}
TY  - JOUR
AU  - R. Yu. Pepa
AU  - F. Yu. Popelensky
TI  - On combinatorial geometric flows of two dimensional surfaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 78
EP  - 88
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_5_a9/
LA  - ru
ID  - IVM_2021_5_a9
ER  - 
%0 Journal Article
%A R. Yu. Pepa
%A F. Yu. Popelensky
%T On combinatorial geometric flows of two dimensional surfaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 78-88
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_5_a9/
%G ru
%F IVM_2021_5_a9
R. Yu. Pepa; F. Yu. Popelensky. On combinatorial geometric flows of two dimensional surfaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2021), pp. 78-88. http://geodesic.mathdoc.fr/item/IVM_2021_5_a9/

[1] Hamilton R., “Three-manifolds with positive Ricci curvature”, J. Diff. Geom., 17 (1982), 255–305 | MR

[2] Hamilton R.S., “The Ricci flow on surfaces”, Math. and general relativ. (Santa Cruz, CA, 1986), Contemp. Math., 71, Amer. Math. Soc., Providence, RI, 1988, 237–262 | DOI | MR

[3] Chow B., “The Ricci flow on the 2-sphere”, J. Diff. Geom., 33:2 (1991), 325–334 | MR | Zbl

[4] Yang Y.-L., Guo R., Luo F., Shi-Min Hu, Gu X., “Generalized Discrete Ricci Flow”, J. Compilation, 2009

[5] Jin M., Luo F., Kim J., Gu X., “Discrete Surface Ricci Flow”, IEEE Transactions on Visualization and Computer Graphics, 2008

[6] Chow B., Luo F., “Combinatorial Ricci flows on surfaces”, J. Diff. Geom., 63 (2003), 97–129 | MR | Zbl

[7] Marden A., Rodin B., “On Thurston's formulation and proof of Andreev's theorem”, Computational methods and function theory (Valparaiso, 1989), Lect. Notes in Math., Springer, Berlin–Heidelberg, 1990, 103–115 | DOI | MR

[8] Thurston W., Geometry and topology of 3-manifolds, Princeton Lect. Notes, 1976

[9] Pepa R.Yu., Popelensky Th.Yu., “On Convergence of Combinatorial Ricci Flow on Surfaces with Negative Weights”, Lobachevskii J. Math., 38:6 (2017), 1061–1068 | DOI | MR | Zbl

[10] Pepa R.Yu., Popelensky Th.Yu., “Equilibrium for a Combinatorial Ricci Flow with Generalized Weights on a Tetrahedron”, Regular and Chaotic Dynamics, 22:5 (2017), 566–578 | DOI | MR | Zbl

[11] Pepa R.Yu., Popelensky Th.Yu., “Combinatorial Ricci flow for degenerate circle packing metrics”, Regular and Chaotic Dynamics, 24:3 (2019), 298–311 | DOI | MR | Zbl

[12] Luo F., “Combinatorial Yamabe Flow on Surfaces”, Communications in Contemporary Math., 6:5 (2004), 765–780 | DOI | MR | Zbl