Hilbert $C^*$-modules related to discrete metric spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2021), pp. 55-63
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that a metric on the union of the sets $X$ and $Y$ determines a Hilbert $C^*$-module over the uniform Roe algebra of the space $X$. Several examples of such Hilbert $C^*$-modules are described in detail.
Keywords:
metric space, Roe algebra, $C^*$-algebra, Hilbert $C^*$-module.
@article{IVM_2021_5_a7,
author = {V. M. Manuilov},
title = {Hilbert $C^*$-modules related to discrete metric spaces},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {55--63},
publisher = {mathdoc},
number = {5},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2021_5_a7/}
}
V. M. Manuilov. Hilbert $C^*$-modules related to discrete metric spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2021), pp. 55-63. http://geodesic.mathdoc.fr/item/IVM_2021_5_a7/