Hilbert $C^*$-modules related to discrete metric spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2021), pp. 55-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that a metric on the union of the sets $X$ and $Y$ determines a Hilbert $C^*$-module over the uniform Roe algebra of the space $X$. Several examples of such Hilbert $C^*$-modules are described in detail.
Keywords: metric space, Roe algebra, $C^*$-algebra, Hilbert $C^*$-module.
@article{IVM_2021_5_a7,
     author = {V. M. Manuilov},
     title = {Hilbert $C^*$-modules related to discrete metric spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {55--63},
     publisher = {mathdoc},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_5_a7/}
}
TY  - JOUR
AU  - V. M. Manuilov
TI  - Hilbert $C^*$-modules related to discrete metric spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 55
EP  - 63
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_5_a7/
LA  - ru
ID  - IVM_2021_5_a7
ER  - 
%0 Journal Article
%A V. M. Manuilov
%T Hilbert $C^*$-modules related to discrete metric spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 55-63
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_5_a7/
%G ru
%F IVM_2021_5_a7
V. M. Manuilov. Hilbert $C^*$-modules related to discrete metric spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2021), pp. 55-63. http://geodesic.mathdoc.fr/item/IVM_2021_5_a7/

[1] Paschke W.L., “Inner product modules over $B^*$-algebras”, Trans. Amer. Math. Soc., 182 (1972), 443–468 | MR

[2] Frank M., “Self-duality and $C^*$-reflexivity of Hilbert $C^*$-modules”, Zeitschr Anal. Anw., 9 (1990), 165–176 | DOI | MR | Zbl

[3] Paschke W.L., “The double $B$-dual of an inner product module over a $C^*$-algebra $B$”, Canad. J. Math., 26 (1974), 1272–1280 | DOI | MR | Zbl

[4] Frank M., Manuilov V.M., Troitsky E.V., “A reflexivity criterion for Hilbert $C^*$-modules over commutative $C^*$-algebras”, New York J. Math., 16 (2010), 399–408 | MR | Zbl

[5] Manuilov V., Troitsky E., “Hilbert $C^*$-and $W^*$-modules and their morphisms”, J. Math. Sci., 98:2 (2000), 137–201 | DOI | MR | Zbl

[6] Nowak P.W., Guoliang Yu., Large scale geometry, EMS Textbooks in Math. European Math. Soc., Zürich, 2012 | MR | Zbl

[7] Roe J., Lectures on coarse geometry, Univ. Lect. Ser., 31, Amer. Math. Soc., Providence, 2003 | DOI | MR | Zbl

[8] Frank M., “Hilbert $C^*$-modules over monotone complete $C^*$-algebras”, Math. Nachr., 175 (1995), 61–83 | DOI | MR | Zbl

[9] Manuilov V., “Metrics on doubles as an inverse semigroup”, J. Geom. Anal., 31 (2021) | DOI | MR

[10] Exel R., “Noncommutative Cartan subalgebras of $C^*$-algebras”, New York, J. Math., 17 (2011), 331–382 | MR | Zbl

[11] Manuilov V., “Roe bimodules as morphisms of discrete metric spaces”, Russian J. Math. Phys., 26 (2019), 470–478 | DOI | MR | Zbl

[12] Gromov M., Geometric Group Theory, v. 2, London Math. Soc. Lect. Note Ser., 182, Asymptotic Invariants of Infinite Groups, CUP, Cambridge, 1993 | MR