An alpha-model of polymer solutions motion
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2021), pp. 33-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

The initial–boundary value problem for the alpha–model describing the motion of weakly concentrated aqueous polymer solutions is investigated at the paper. The considered mathematical model is studied with the rheological relation satisfing the objectivity principle. The weak solutions existence for the alpha–model is proved on the based of the topological approximation apporoach for hydrodynamic problems study. Also the convergence of alpha–models solutions to a solution of the original model is proved when alpha tends to zero.
Keywords: viscoelastic fluid, alpha–model, objectivity principle, existence theorem, topological degree.
@article{IVM_2021_5_a5,
     author = {A. V. Zvyagin},
     title = {An alpha-model of polymer solutions motion},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {33--42},
     publisher = {mathdoc},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_5_a5/}
}
TY  - JOUR
AU  - A. V. Zvyagin
TI  - An alpha-model of polymer solutions motion
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 33
EP  - 42
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_5_a5/
LA  - ru
ID  - IVM_2021_5_a5
ER  - 
%0 Journal Article
%A A. V. Zvyagin
%T An alpha-model of polymer solutions motion
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 33-42
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_5_a5/
%G ru
%F IVM_2021_5_a5
A. V. Zvyagin. An alpha-model of polymer solutions motion. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2021), pp. 33-42. http://geodesic.mathdoc.fr/item/IVM_2021_5_a5/

[1] Pavlovskii V.A., “K voprosu o teoreticheskom opisanii slabykh vodnykh rastvorov polimerov”, DAN SSSR, 200:4 (1971), 809–812

[2] Amfilokhiev V.B., Voitkunskii Ya.I., Mazaeva N.P., Khodornovskii Ya.S., “Techenie polimernykh rastvorov pri nalichii konvektivnykh uskorenii”, Tr. Leningradsk. ordena Lenina korablestroitelnogo in-ta, 96 (1975), 3–9

[3] Zvyagin A.V., “Solvability for equations of motion of weak aqueous polymer solutions with objective derivative”, Nonlinear Anal. TMA, 90 (2013), 70–85 | DOI | MR | Zbl

[4] Zvyagin V.G., Turbin M.V., Matematicheskie voprosy gidrodinamiki vyazkouprugikh sred, KRASAND URSS, M., 2012

[5] Le Roux C., “Existence and uniqueness of the flow of second–grade fluids with slip boundary conditions”, Arch. Ration. Mech. Anal., 148 (1999), 309–356 | DOI | MR | Zbl

[6] Zvyagin A.V., “Attraktory dlya modeli dvizheniya polimerov s ob'ektivnoi proizvodnoi v reologicheskom sootnoshenii”, DAN, 453:6 (2013), 599–602 | Zbl

[7] Zvyagin A.V., “Attractors for model of polymer solutions motion”, DCDS, 28:12 (2018), 6305–6325 | DOI | MR

[8] Zvyagin A.V., “Issledovanie razreshimosti termovyazkouprugoi modeli, opisyvayuschei dvizhenie slabo kontsentrirovannykh vodnykh rastvorov polimerov”, Sib. matem. zhurn., 59:5 (2018), 1066–1085 | MR | Zbl

[9] Frolovskaya O.A., Pukhnachev V.V., “Analysis of the models of motion of aqueous solutions of polymers on the basis of their exact solutions”, Polymers, 10 (2018), 684 | DOI | MR

[10] Pukhnachev V.V., Frolovskaya O.A., “O modeli Voitkunskogo–Amfilokhieva–Pavlovskogo dvizheniya vodnykh rastvorov polimerov”, Tr. MIAN, 300, 2018, 176–189 | Zbl

[11] Zvyagin A.V., “O slaboi razreshimosti i skhodimosti reshenii drobnoi alfa-modeli Foigta dvizheniya vyazkouprugoi sredy”, UMN, 74:3 (2019), 189–190 | MR | Zbl

[12] Zvyagin A.V., “Issledovanie slaboi razreshimosti drobnoi alfa-modeli Foigta”, Izv. RAN. Ser. matem., 85:1 (2021), 66–97 | MR | Zbl

[13] Leray J., “Essai sur le mouvement d'un fluide visqueux emplissant l'space”, Acta Math., 63:2 (1934), 193–248 | DOI | MR | Zbl

[14] Lemarie–Rieusset P.G., The Navier–Stokes Problem in the $21$st Century, Taylor and Francis Group, 2016 | MR

[15] Fursikov A.V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Novosibirsk, 1999

[16] Zvyagin V.G., “Approksimatsionno-topologicheskii podkhod k issledovaniyu matematicheskikh zadach gidrodinamiki”, SMFN, 46, 2012, 92–119

[17] Simon J., “Compact sets in the space $L^p(0,T; B)$”, Ann. Mat. Pura Appl., 146 (1987), 65–96 | DOI | MR