Guiding Potentials and bounded solutions of differential equations on finite-dimensional non-compact maniforlds
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2021), pp. 16-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to some modification of the theory of guiding potentials in such a way that it becomes applicable to investigation of ordinary differential equations on non-compact on finite-dimensional non-compact smooth manifolds. Two constructions of the topological index on manifolds are described – for the maps of manifolds and for tangent and cotangent vector fields. On the basis of this modification we prove a theorem of existence of a solution that is uniformly bounded on the entire line.
Keywords: non-compact finite-dimensional manifold, vector field and differential equation, guiding potential, uniformly bounded solution.
@article{IVM_2021_5_a3,
     author = {Yu. E. Gliklikh},
     title = {Guiding {Potentials} and bounded solutions of differential equations on finite-dimensional non-compact maniforlds},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {16--22},
     publisher = {mathdoc},
     number = {5},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_5_a3/}
}
TY  - JOUR
AU  - Yu. E. Gliklikh
TI  - Guiding Potentials and bounded solutions of differential equations on finite-dimensional non-compact maniforlds
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 16
EP  - 22
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_5_a3/
LA  - ru
ID  - IVM_2021_5_a3
ER  - 
%0 Journal Article
%A Yu. E. Gliklikh
%T Guiding Potentials and bounded solutions of differential equations on finite-dimensional non-compact maniforlds
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 16-22
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_5_a3/
%G ru
%F IVM_2021_5_a3
Yu. E. Gliklikh. Guiding Potentials and bounded solutions of differential equations on finite-dimensional non-compact maniforlds. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2021), pp. 16-22. http://geodesic.mathdoc.fr/item/IVM_2021_5_a3/

[1] Gliklikh Yu., Kornev S., Obukhovskii V., “Guiding Potentials and Periodic Solutions of Differential Equations on Manifolds”, Global and Stochastic Anal., 6:1 (2019), 1–6

[2] Borisovich Yu.G., Bliznyakov N.M., Izrailevich Ya.A., Fomenko T.N., Vvedenie v topologiyu, Fizmatlit, M., 1995 | MR

[3] Krasnoselskii M.A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, M., 1956

[4] Krasnoselskii M.A., Zabreiko P.P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975

[5] Borisovich Ju.G., Gliklih Ju.E., “Fixed points of mappings of Banach manifolds and some applications”, Nonlinear Anal., 4:1 (1980), 165–192 | DOI | MR | Zbl

[6] Gliklikh Yu.E., Global and stochastic analysis with applications to mathematical physics, Springer-Verlag, London, 2011 | MR | Zbl

[7] Krasnoselskii M.A., Operator sdviga po traektoriyam differentsialnykh uravnenii, Fizmatlit, M., 1966 | MR