Continuous extension of functions from a segment to functions in $\mathbb{R}^n$ with zero ball means
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2021), pp. 3-14
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\mathbb{R}^n$ be an Euclidean space of dimension $n\geq 2$. For a domain $G\subset \mathbb{R}^n$, we denote by $V_r(G)$ the set of functions $f\in L_{\mathrm{loc}}(G)$ having zero integrals over all closed balls of radius $r$ contained in $G$ (if the domain $G$ does not contain such balls, then we set $V_r(G)=L_{\mathrm{loc}}(G)$). Let $E$ be a nonempty subset of $\mathbb{R}^n$. In this paper we study the following questions related to with the extension problem.
1) Under what conditions given on $E$ continuous function can be extended to the whole space $\mathbb{R}^n$ to a continuous function of class $V_r(\mathbb{R}^n)$?
2) If the above extension exists, obtain growth estimates continued function at infinity.
Theorem 1 of this paper shows that for a wide class of continuous functions on segment $E$ defined in terms of the modulus of continuity there exists extension to a bounded function of class $(V_r\cap C)(\mathbb{R}^n)$ regardless of the length of segment $E$. A similar result is not true for open sets $E$ with a diameter greater than $2r$ even without conditions for extension growth. Theorem 1 also contains an estimate of the velocity decrease of the extended function at infinity in directions orthogonal to the segment $E$.
As Theorem 2 shows, in the case of a space with odd dimension $n$ Theorem 1 holds for any function continuous on $E$ with another growth estimate. The method of proving Theorems 1 and 2 allows one to obtain similar results for functions with zero integrals over all spheres of fixed radius (in this case, an analog of Theorem 2 holds for spaces with even dimension).
Keywords:
spherical and ball means, extension problem, trigonometric series.
@article{IVM_2021_3_a0,
author = {V. V. Volchkov and Vit. V. Volchkov},
title = {Continuous extension of functions from a segment to functions in $\mathbb{R}^n$ with zero ball means},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--14},
publisher = {mathdoc},
number = {3},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2021_3_a0/}
}
TY - JOUR
AU - V. V. Volchkov
AU - Vit. V. Volchkov
TI - Continuous extension of functions from a segment to functions in $\mathbb{R}^n$ with zero ball means
JO - Izvestiâ vysših učebnyh zavedenij. Matematika
PY - 2021
SP - 3
EP - 14
IS - 3
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/IVM_2021_3_a0/
LA - ru
ID - IVM_2021_3_a0
ER -
%0 Journal Article
%A V. V. Volchkov
%A Vit. V. Volchkov
%T Continuous extension of functions from a segment to functions in $\mathbb{R}^n$ with zero ball means
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 3-14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_3_a0/
%G ru
%F IVM_2021_3_a0
V. V. Volchkov; Vit. V. Volchkov. Continuous extension of functions from a segment to functions in $\mathbb{R}^n$ with zero ball means. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2021), pp. 3-14. http://geodesic.mathdoc.fr/item/IVM_2021_3_a0/