Continuous extension of functions from a segment to functions in $\mathbb{R}^n$ with zero ball means
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2021), pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbb{R}^n$ be an Euclidean space of dimension $n\geq 2$. For a domain $G\subset \mathbb{R}^n$, we denote by $V_r(G)$ the set of functions $f\in L_{\mathrm{loc}}(G)$ having zero integrals over all closed balls of radius $r$ contained in $G$ (if the domain $G$ does not contain such balls, then we set $V_r(G)=L_{\mathrm{loc}}(G)$). Let $E$ be a nonempty subset of $\mathbb{R}^n$. In this paper we study the following questions related to with the extension problem. 1) Under what conditions given on $E$ continuous function can be extended to the whole space $\mathbb{R}^n$ to a continuous function of class $V_r(\mathbb{R}^n)$? 2) If the above extension exists, obtain growth estimates continued function at infinity. Theorem 1 of this paper shows that for a wide class of continuous functions on segment $E$ defined in terms of the modulus of continuity there exists extension to a bounded function of class $(V_r\cap C)(\mathbb{R}^n)$ regardless of the length of segment $E$. A similar result is not true for open sets $E$ with a diameter greater than $2r$ even without conditions for extension growth. Theorem 1 also contains an estimate of the velocity decrease of the extended function at infinity in directions orthogonal to the segment $E$. As Theorem 2 shows, in the case of a space with odd dimension $n$ Theorem 1 holds for any function continuous on $E$ with another growth estimate. The method of proving Theorems 1 and 2 allows one to obtain similar results for functions with zero integrals over all spheres of fixed radius (in this case, an analog of Theorem 2 holds for spaces with even dimension).
Keywords: spherical and ball means, extension problem, trigonometric series.
@article{IVM_2021_3_a0,
     author = {V. V. Volchkov and Vit. V. Volchkov},
     title = {Continuous extension of functions from a segment to functions in $\mathbb{R}^n$ with zero ball means},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--14},
     publisher = {mathdoc},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_3_a0/}
}
TY  - JOUR
AU  - V. V. Volchkov
AU  - Vit. V. Volchkov
TI  - Continuous extension of functions from a segment to functions in $\mathbb{R}^n$ with zero ball means
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 3
EP  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_3_a0/
LA  - ru
ID  - IVM_2021_3_a0
ER  - 
%0 Journal Article
%A V. V. Volchkov
%A Vit. V. Volchkov
%T Continuous extension of functions from a segment to functions in $\mathbb{R}^n$ with zero ball means
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 3-14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_3_a0/
%G ru
%F IVM_2021_3_a0
V. V. Volchkov; Vit. V. Volchkov. Continuous extension of functions from a segment to functions in $\mathbb{R}^n$ with zero ball means. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2021), pp. 3-14. http://geodesic.mathdoc.fr/item/IVM_2021_3_a0/

[1] Pompeiu D., “Sur une propriété intégrale de fonctions de deux variables réeles”, Bull. Sci. Acad. Royale Belgique. Sér. 5, 15 (1929), 265–269 | Zbl

[2] Chakalov L., “Sur un problème de D. Pompeiu”, Annuaire [Godišnik] Univ. Sofia Fac. Phys.-Math., Liv. 1, 40 (1944), 1–14 | MR | Zbl

[3] Radon J., “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten”, Ber. Verh. Sächs. Akad. Wiss. Leipzig. Math.-Nat. Kl., 69 (1917), 262–277 | Zbl

[4] Volchkov V. V., Volchkov Vit. V., Offbeat Integral Geometry on Symmetric Spaces, Birkhäuser, Basel, 2013 | MR | Zbl

[5] Zalcman L., “A bibliographic survey of the Pompeiu problem”, Approx. by solut. of part. diff. equat., Kluwer Academic Publishers, Dordrecht, 1992, 185–194 | MR

[6] Berenstein K. A., Struppa D., “Kompleksnyi analiz i uravneniya v svertkakh”, Itogi nauki i tekhn. Sovrem. probl. matem., Fundament. napravleniya, 54, VINITI, 1989, 5–111

[7] Zalcman L., “Supplementary bibliography to “A bibliographic survey of the Pompeiu problem””, Radon Transform and Tomography, Contemp. Math., 278, 2001, 69–74 | DOI | MR | Zbl

[8] Volchkov V. V., Integral geometry and convolution equations, Kluwer Academic Publishers, Dordrecht, 2003 | MR | Zbl

[9] Volchkov V. V., Volchkov Vit. V., Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group, Springer, London, 2009 | MR | Zbl

[10] Ion F., Ploskie volny i sfericheskie srednie v primenenii k differentsialnym uravneniyam s chastnymi proizvodnymi, In. lit., M., 1958

[11] Smith J. D., “Harmonic analysis of scalar and vector fields in $\mathbb R^n$”, Proc. Cambridge Philos. Soc., 72 (1972), 403–416 | DOI | MR | Zbl

[12] Rawat R., Sitaram A., “The injectivity of the Pompeiu transform and $L^p$-analogues of the Wiener Tauberian theorem”, Israel J. Math., 91 (1995), 307–316 | DOI | MR | Zbl

[13] Thangavelu S., “Spherical means and $\mathrm{CR}$ functions on the Heisenberg group”, J. Anal. Math., 63 (1994), 255–286 | DOI | MR | Zbl

[14] Ungar P., “Freak theorem about functions on a sphere”, J. London Math. Soc. (2), 29 (1954), 100–103 | DOI | MR | Zbl

[15] Schneider R., “Functions on a sphere with vanishing integrals over certain subspheres”, J. Math. Anal. Appl., 26 (1969), 381–384 | DOI | MR | Zbl

[16] Delsarte J., “Note sur une propriété nouvelle des fonctions harmoniques”, C. R. Acad. Sci. Paris Sér. A–B, 246 (1969), 1358–1360 | MR

[17] Netuka I., Vesely J., “Mean value property and harmonic functions”, Classical and Modern potential Theory and Applications, ed. Comri Sankaran et al., Kluwer Acad. Publ., 1994, 359–398 | DOI | MR | Zbl

[18] Volchkov V. V., “Reshenie problemy nositelya dlya nekotorykh klassov funktsii”, Matem. sb., 188:9 (1997), 13–30 | MR | Zbl

[19] Volchkov Vit. V., Volchkova N. P., “Problema ustranimosti dlya funktsii s nulevymi sharovymi srednimi”, Sib. matem. zhurn., 58:3 (2017), 543–552 | MR | Zbl

[20] Berenstein C. A., Gay R., Yger A., “Inversion of the local Pompeiu transform”, J. Anal. Math., 54 (1990), 259–287 | DOI | MR | Zbl

[21] Berkani M., El Harchaoui M., Gay R., “Inversion de la transformation de Pompéiu locale dans l{'}espace hyperbolique quaternique – Cas des deux boules”, J. Complex Variables, 43 (2000), 29–57 | MR | Zbl

[22] Volchkov Vit.V., Volchkova N. P., “Obraschenie lokalnogo preobrazovaniya Pompeiyu na kvaternionnom giperbolicheskom prostranstve”, Dokl. RAN, 379:5 (2001), 587–590 | MR | Zbl

[23] Volchkov Vit.V., Volchkova N. P., “Teoremy ob obraschenii lokalnogo preobrazovaniya Pompeiyu na kvaternionnom giperbolicheskom prostranstve”, Algebra i analiz, 15:5 (2003), 169–197

[24] Volchkov V. V., Volchkov Vit.V., “Interpolyatsionnye zadachi dlya funktsii s nulevymi integralami po sharam fiksirovannogo radiusa”, Dokl. RAN. Matematika, informatika, protsessy upravleniya, 490:1 (2020), 20–23

[25] Zaraiskii D. A., “O mnozhestvakh, na kotorykh funktsii s nulevymi integralami po sharam dopuskayut proizvolnoe povedenie”, Tr. IPMM, 30 (2016), 46–52

[26] Korenev B. G., Vvedenie v teoriyu besselevykh funktsii, Nauka, M., 1971

[27] Zigmund A., Trigonometricheskie ryady, v. 1, Mir, M., 1965

[28] Zigmund A., Trigonometricheskie ryady, v. 2, Mir, M., 1965

[29] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M., 1961