Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2021_2_a4, author = {A. B. Khasanov and F. R. Tursunov}, title = {On the {Cauchy} problem for the three-dimensional {Laplace} equation}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {56--73}, publisher = {mathdoc}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2021_2_a4/} }
TY - JOUR AU - A. B. Khasanov AU - F. R. Tursunov TI - On the Cauchy problem for the three-dimensional Laplace equation JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2021 SP - 56 EP - 73 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2021_2_a4/ LA - ru ID - IVM_2021_2_a4 ER -
A. B. Khasanov; F. R. Tursunov. On the Cauchy problem for the three-dimensional Laplace equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2021), pp. 56-73. http://geodesic.mathdoc.fr/item/IVM_2021_2_a4/
[1] Tikhonov A. N., “Ob ustoichivosti obratnykh zadach”, DAN SSSR, 39:5 (1943), 195–198
[2] Carleman T., Les Functions quasi analytiques, Paris, 1926
[3] Goluzin G. M., Krylov V. I., “Obobschennaya formula Karlemana i ee prilozhenie k analiticheckomu prodolzheniyu funktsii”, Matem. sb., 40 (1933), 144–149 | Zbl
[4] Aizenberg L. A., Formuly Karlemana v kompleksnom analize, Nauka, Novosibirsk, 1990 | MR
[5] Lavrentev M. M., “O zadache Koshi dlya uravneniya Laplasa”, Izv. AN SSSR Ser. matem., 20:6 (1956), 819–842 | MR | Zbl
[6] Lavrentev M. M., O nekotorykh nekorrektnykh zadachakh matematicheskoi fiziki, Izd-vo SO AN SSSR, Novosibirsk, 1962
[7] Yarmukhamedov Sh. Ya., “O garmonicheskom prodolzhenii differentsiruemykh funktsii, zadannykh na kuske granitsy”, Sib. matem. zhurn., 43:1 (2002), 228–239 | MR | Zbl
[8] Yarmukhamedov Sh., “Predstavlenie garmonicheskoi funktsii v vide potentsialov i zadacha Koshi”, Matem. zametki, 83:5 (2008), 763–778 | MR | Zbl
[9] Yarmukhamedov Sh., O zadache Koshi dlya uravneniya Laplasa, Diss. dokt. fiz.-matem. nauk, Novosibirsk, 1983
[10] Hadamard J., Lectures on the Cauchy Problem in Linear Partial Differential Equations, Yale Univ. Press, New Haven, 1923 | MR
[11] Alessandrini G., Rondi L., Rosset E., Vessella S., “The stability for the Cauchy problem for elliptic equations”, Inverse Probl., 25 (2009), 1–47 | DOI | MR
[12] Tikhonov A. N., Arsenin V. Y., Solution of ill-posed Problems, Winston and Sons, Washington, 1977 | MR
[13] Engl E. H., Hanke M., Neubauer A., Regularization of Inverse Problems, Math. and Its Appl. Kluwer, Dordrecht, 1996 | MR | Zbl
[14] Klibanov M. V., Santosa F., “A computational quasi-reversibility method for Cauchy problems for Laplace's equation”, SIAM J. Appl. Math., 51 (1991), 1653–1675 | DOI | MR | Zbl
[15] Takeuchi T., Yamamoto M., “Tikhonov regularization by a reproducing kernel Hilbert space for the Cauchy problem for an elliptic equation”, SIAM J. Sci. Comput., 31:1 (2008), 112–142 | DOI | MR | Zbl
[16] Marin L., “Relaxation procedures for an iterative MFS algorithm for two-dimensional steady-state isotropic heat conduction Cauchy problems”, Eng. Anal. Bound. Elem., 35 (2011), 415–429 | DOI | MR | Zbl
[17] Klibanov M. V., “Carleman estimates and inverse problems in the last two decades”, Surveys on Solution Methods for Inverse Prob., Springer, 2000, 119–146 | DOI | MR | Zbl
[18] Khasanov A. B., Tursunov F. R., “O zadache Koshi dlya uravneniya Laplasa”, Ufimsk. matem. zhurn., 11:4 (2019), 92–106 | Zbl
[19] Ikehata M., “Inverse conductivity problem in the infinite slab”, Inverse Probl., 17:3 (2001), 437–454 | DOI | MR | Zbl