On the Cauchy problem for the three-dimensional Laplace equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2021), pp. 56-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the work, using the Carleman function, they are restored by Cauchy's data on the part of the boundary of the region is a harmonic function, and its derivatives. It is shown that the effective construction of the Carleman function is equivalent to the construction of a regularized solution of the Cauchy problem. It is assumed that a solution to the problem exists and is continuously differentiable in a closed domain with precisely given Cauchy data. For this case, an explicit formula for the continuation of the solution and its derivative, as well as the regularization formula for the case when, under the indicated conditions, instead of the initial Cauchy data, their continuous approximations are given with a given error in the uniform metric. Estimates of the stability of the solution of the Cauchy problem in the classical sense are obtained.
Keywords: Cauchy problem, ill-posed problems, Carleman function, regularized solutions, regularization, continuation formulas.
@article{IVM_2021_2_a4,
     author = {A. B. Khasanov and F. R. Tursunov},
     title = {On the {Cauchy} problem for the three-dimensional {Laplace} equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {56--73},
     publisher = {mathdoc},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_2_a4/}
}
TY  - JOUR
AU  - A. B. Khasanov
AU  - F. R. Tursunov
TI  - On the Cauchy problem for the three-dimensional Laplace equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 56
EP  - 73
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_2_a4/
LA  - ru
ID  - IVM_2021_2_a4
ER  - 
%0 Journal Article
%A A. B. Khasanov
%A F. R. Tursunov
%T On the Cauchy problem for the three-dimensional Laplace equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 56-73
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_2_a4/
%G ru
%F IVM_2021_2_a4
A. B. Khasanov; F. R. Tursunov. On the Cauchy problem for the three-dimensional Laplace equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2021), pp. 56-73. http://geodesic.mathdoc.fr/item/IVM_2021_2_a4/

[1] Tikhonov A. N., “Ob ustoichivosti obratnykh zadach”, DAN SSSR, 39:5 (1943), 195–198

[2] Carleman T., Les Functions quasi analytiques, Paris, 1926

[3] Goluzin G. M., Krylov V. I., “Obobschennaya formula Karlemana i ee prilozhenie k analiticheckomu prodolzheniyu funktsii”, Matem. sb., 40 (1933), 144–149 | Zbl

[4] Aizenberg L. A., Formuly Karlemana v kompleksnom analize, Nauka, Novosibirsk, 1990 | MR

[5] Lavrentev M. M., “O zadache Koshi dlya uravneniya Laplasa”, Izv. AN SSSR Ser. matem., 20:6 (1956), 819–842 | MR | Zbl

[6] Lavrentev M. M., O nekotorykh nekorrektnykh zadachakh matematicheskoi fiziki, Izd-vo SO AN SSSR, Novosibirsk, 1962

[7] Yarmukhamedov Sh. Ya., “O garmonicheskom prodolzhenii differentsiruemykh funktsii, zadannykh na kuske granitsy”, Sib. matem. zhurn., 43:1 (2002), 228–239 | MR | Zbl

[8] Yarmukhamedov Sh., “Predstavlenie garmonicheskoi funktsii v vide potentsialov i zadacha Koshi”, Matem. zametki, 83:5 (2008), 763–778 | MR | Zbl

[9] Yarmukhamedov Sh., O zadache Koshi dlya uravneniya Laplasa, Diss. dokt. fiz.-matem. nauk, Novosibirsk, 1983

[10] Hadamard J., Lectures on the Cauchy Problem in Linear Partial Differential Equations, Yale Univ. Press, New Haven, 1923 | MR

[11] Alessandrini G., Rondi L., Rosset E., Vessella S., “The stability for the Cauchy problem for elliptic equations”, Inverse Probl., 25 (2009), 1–47 | DOI | MR

[12] Tikhonov A. N., Arsenin V. Y., Solution of ill-posed Problems, Winston and Sons, Washington, 1977 | MR

[13] Engl E. H., Hanke M., Neubauer A., Regularization of Inverse Problems, Math. and Its Appl. Kluwer, Dordrecht, 1996 | MR | Zbl

[14] Klibanov M. V., Santosa F., “A computational quasi-reversibility method for Cauchy problems for Laplace's equation”, SIAM J. Appl. Math., 51 (1991), 1653–1675 | DOI | MR | Zbl

[15] Takeuchi T., Yamamoto M., “Tikhonov regularization by a reproducing kernel Hilbert space for the Cauchy problem for an elliptic equation”, SIAM J. Sci. Comput., 31:1 (2008), 112–142 | DOI | MR | Zbl

[16] Marin L., “Relaxation procedures for an iterative MFS algorithm for two-dimensional steady-state isotropic heat conduction Cauchy problems”, Eng. Anal. Bound. Elem., 35 (2011), 415–429 | DOI | MR | Zbl

[17] Klibanov M. V., “Carleman estimates and inverse problems in the last two decades”, Surveys on Solution Methods for Inverse Prob., Springer, 2000, 119–146 | DOI | MR | Zbl

[18] Khasanov A. B., Tursunov F. R., “O zadache Koshi dlya uravneniya Laplasa”, Ufimsk. matem. zhurn., 11:4 (2019), 92–106 | Zbl

[19] Ikehata M., “Inverse conductivity problem in the infinite slab”, Inverse Probl., 17:3 (2001), 437–454 | DOI | MR | Zbl