Inhomogeneous Hilbert boundary value problem with several points of logarithmic turbulence
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2021), pp. 64-80

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the so called Hilbert boundary value problem with boundary condition in the unit disk. Its coficient is assumed to be Hölder-continuous everywhere on the unit circle excluding a finite set of points. At these points its argument has nonremovable discontinuity of logarithmic order. We obtain formulas for the general solution and describe completely the solvability picture in a class of analytic and bounded functions in unit disc. Our technique is based on the theory of entire functions of zero-order approximation and the geometric theory of functions. The results obtained are applied to the study of the solvability of a single boundary value problem for a certain class generalized analytic function.
Keywords: Riemann–Hilbert problem, maximum principle, infinite index, entire functions of zero-order approximation, generalized analytic function.
@article{IVM_2021_1_a4,
     author = {P. L. Shabalin and A. Kh. Fatykhov},
     title = {Inhomogeneous {Hilbert} boundary value problem with several points of logarithmic turbulence},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {64--80},
     publisher = {mathdoc},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_1_a4/}
}
TY  - JOUR
AU  - P. L. Shabalin
AU  - A. Kh. Fatykhov
TI  - Inhomogeneous Hilbert boundary value problem with several points of logarithmic turbulence
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 64
EP  - 80
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_1_a4/
LA  - ru
ID  - IVM_2021_1_a4
ER  - 
%0 Journal Article
%A P. L. Shabalin
%A A. Kh. Fatykhov
%T Inhomogeneous Hilbert boundary value problem with several points of logarithmic turbulence
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 64-80
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_1_a4/
%G ru
%F IVM_2021_1_a4
P. L. Shabalin; A. Kh. Fatykhov. Inhomogeneous Hilbert boundary value problem with several points of logarithmic turbulence. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2021), pp. 64-80. http://geodesic.mathdoc.fr/item/IVM_2021_1_a4/