Inhomogeneous Hilbert boundary value problem with several points of logarithmic turbulence
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2021), pp. 64-80
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the so called Hilbert boundary value problem with boundary condition in the unit disk. Its coficient is assumed to be Hölder-continuous everywhere on the unit circle excluding a finite set of points. At these points its argument has nonremovable discontinuity of logarithmic order. We obtain formulas for the general solution and describe completely the solvability picture in a class of analytic and bounded functions in unit disc. Our technique is based on the theory of entire functions of zero-order approximation and the geometric theory of functions. The results obtained are applied to the study of the solvability of a single boundary value problem for a certain class generalized analytic function.
Keywords:
Riemann–Hilbert problem, maximum principle, infinite index, entire functions of zero-order approximation, generalized analytic function.
@article{IVM_2021_1_a4,
author = {P. L. Shabalin and A. Kh. Fatykhov},
title = {Inhomogeneous {Hilbert} boundary value problem with several points of logarithmic turbulence},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {64--80},
publisher = {mathdoc},
number = {1},
year = {2021},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2021_1_a4/}
}
TY - JOUR AU - P. L. Shabalin AU - A. Kh. Fatykhov TI - Inhomogeneous Hilbert boundary value problem with several points of logarithmic turbulence JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2021 SP - 64 EP - 80 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2021_1_a4/ LA - ru ID - IVM_2021_1_a4 ER -
%0 Journal Article %A P. L. Shabalin %A A. Kh. Fatykhov %T Inhomogeneous Hilbert boundary value problem with several points of logarithmic turbulence %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2021 %P 64-80 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2021_1_a4/ %G ru %F IVM_2021_1_a4
P. L. Shabalin; A. Kh. Fatykhov. Inhomogeneous Hilbert boundary value problem with several points of logarithmic turbulence. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2021), pp. 64-80. http://geodesic.mathdoc.fr/item/IVM_2021_1_a4/