Inhomogeneous Hilbert boundary value problem with several points of logarithmic turbulence
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2021), pp. 64-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the so called Hilbert boundary value problem with boundary condition in the unit disk. Its coficient is assumed to be Hölder-continuous everywhere on the unit circle excluding a finite set of points. At these points its argument has nonremovable discontinuity of logarithmic order. We obtain formulas for the general solution and describe completely the solvability picture in a class of analytic and bounded functions in unit disc. Our technique is based on the theory of entire functions of zero-order approximation and the geometric theory of functions. The results obtained are applied to the study of the solvability of a single boundary value problem for a certain class generalized analytic function.
Keywords: Riemann–Hilbert problem, maximum principle, infinite index, entire functions of zero-order approximation, generalized analytic function.
@article{IVM_2021_1_a4,
     author = {P. L. Shabalin and A. Kh. Fatykhov},
     title = {Inhomogeneous {Hilbert} boundary value problem with several points of logarithmic turbulence},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {64--80},
     publisher = {mathdoc},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_1_a4/}
}
TY  - JOUR
AU  - P. L. Shabalin
AU  - A. Kh. Fatykhov
TI  - Inhomogeneous Hilbert boundary value problem with several points of logarithmic turbulence
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 64
EP  - 80
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_1_a4/
LA  - ru
ID  - IVM_2021_1_a4
ER  - 
%0 Journal Article
%A P. L. Shabalin
%A A. Kh. Fatykhov
%T Inhomogeneous Hilbert boundary value problem with several points of logarithmic turbulence
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 64-80
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_1_a4/
%G ru
%F IVM_2021_1_a4
P. L. Shabalin; A. Kh. Fatykhov. Inhomogeneous Hilbert boundary value problem with several points of logarithmic turbulence. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2021), pp. 64-80. http://geodesic.mathdoc.fr/item/IVM_2021_1_a4/

[1] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977

[2] Govorov N. V., Kraevaya zadacha Rimana s beskonechnym indeksom, Nauka, M., 1986

[3] Tolochko M. E., “O kraevoi zadache Rimana s beskonechnym indeksom dlya poluploskosti”, Izv. AN BSSR. Ser. fiz.-matem. nauk, 4 (1969), 52–59 | MR | Zbl

[4] Sandrygailo I. E., “O kraevoi zadache Rimana s beskonechnym indeksom dlya poluploskosti”, Dokl. AN BSSR, 19:10 (1975), 872–875 | MR

[5] Monakhov V. N., Semenko E. V., “Kraevye zadachi s beskonechnym indeksom v prostranstvakh Khardi”, DAN SSSR, 291:3 (1986), 544–547 | MR

[6] Monakhov V. N., Semenko E. V., Kraevye zadachi i psevdodifferentsialnye operatory na rimanovykh poverkhnostyakh, Fizmatlit, M., 2003

[7] Yurov P. G., “Odnorodnaya kraevaya zadacha Rimana s beskonechnym indeksom logarifmicheskogo tipa”, Izv. vuzov. Matem., 1966, no. 2, 158–163

[8] Yurov P. G., “Asimptoticheskie otsenki tselykh funktsii, zadannykh kanonicheskimi proizvedeniyami”, Matem. zametki, 10:6 (1971), 641–648

[9] Sandrygailo I. E., “O kraevoi zadache Gilberta s beskonechnym indeksom dlya poluploskosti”, Izv. AN BSSR. Ser. fiz.-matem. nauk, 6 (1974), 16–23 | MR

[10] Salimov R. B., Shabalin P. L., “K resheniyu zadachi Gilberta s beskonechnym indeksom”, Matem. zametki, 73:5 (2003), 724–734 | MR | Zbl

[11] Salimov R. B., Shabalin P. L., Kraevaya zadacha Gilberta teorii analiticheskikh funktsii i ee prilozheniya, Izd-vo Kazansk. matem. o-va, Kazan, 2005

[12] Alekna P. Yu., “Kraevaya zadacha Gilberta s beskonechnym indeksom logarifmicheskogo poryadka dlya poluploskosti”, Lit. matem. rink., XVII:1 (1977), 5–11 | MR

[13] Alekhno A. G., “Kraevaya zadacha Gilberta s beskonechnym indeksom logarifmicheskogo poryadka”, Dokl. AN BSSR, 53:2 (2009), 5–10 | MR | Zbl

[14] Vekua I. N., Obobschennye analiticheskie funktsii, Nauka, M., 1988

[15] Radzhabov N. R., Vvedenie v teoriyu differentsialnykh uravnenii v chastnykh proizvodnykh so sverkhsingulyarnymi koeffitsientami, Dushanbe, 1992

[16] Soldatov A. P., Rasulov A. B., “Kraevaya zadacha dlya obobschennogo uravneniya Koshi-Rimana s singulyarnymi koeffitsientami”, Differents. uravneniya, 52:5 (2016), 637–650 | Zbl

[17] Rasulov A. B., “Zadacha Rimana na poluokruzhnosti dlya obobschennoi sistemy Koshi-Rimana s singulyarnoi liniei”, Differents. uravneniya, 40:9 (2004), 1990–1992

[18] Salimov R. B., Fatykhov A.Kh., Shabalin P. L., “Homogeneous Hilbert boundary value problem with several points of turbulence”, Lobachevskii J. Math., 38:3 (2017), 414–419 | DOI | MR | Zbl

[19] Fatykhov A.Kh., Shabalin P. L., “Solvability homogeneous Riemann-Hilbert boundary value problem with several points of turbulence”, Probl. Anal. Issues Anal., 7:25, Spec. Iss. (2018), 30–38 | MR

[20] Salimov R. B., Shabalin P. L., “O razreshimosti odnorodnoi zadachi Gilberta s razryvami koeffitsientov i dvustoronnim zavikhreniem na beskonechnosti logarifmicheskogo poryadka”, Izv. vuzov. Matem., 2016, no. 1, 36–48 | Zbl

[21] Gurvits A., Kurant R., Teoriya funktsii, Nauka, M., 1968

[22] Evgrafov M. A., Asimptoticheskie otsenki i tselye funktsii, Nauka, M., 1979 | MR

[23] Alekna P. Yu., “Neodnorodnaya kraevaya zadacha Rimana s beskonechnym indeksom logarifmicheskogo poryadka dlya poluploskosti”, Lit. matem. rink. XIV, 3 (1974), 5–14 | MR | Zbl

[24] Melnik I. M., “O kraevoi zadache Rimana s razryvnymi koeffitsientami”, Izv. vuzov. Matem., 1959, no. 2, 158–166 | Zbl