Kaczmarz method for fuzzy linear systems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2021), pp. 23-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

A Kaczmarz method is presented for solving a class of fuzzy linear systems of equations with crisp coefficient matrix and fuzzy right-hand side. The iterative scheme is established and the convergence theorem is provided. Numerical examples show that the method is effective.
Keywords: fuzzy linear system, Kaczmarz method, iterative scheme.
@article{IVM_2021_12_a2,
     author = {L. Bian and S. Zhang and S. Wang and K. Wang},
     title = {Kaczmarz method for fuzzy linear systems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {23--30},
     publisher = {mathdoc},
     number = {12},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_12_a2/}
}
TY  - JOUR
AU  - L. Bian
AU  - S. Zhang
AU  - S. Wang
AU  - K. Wang
TI  - Kaczmarz method for fuzzy linear systems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 23
EP  - 30
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_12_a2/
LA  - ru
ID  - IVM_2021_12_a2
ER  - 
%0 Journal Article
%A L. Bian
%A S. Zhang
%A S. Wang
%A K. Wang
%T Kaczmarz method for fuzzy linear systems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 23-30
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_12_a2/
%G ru
%F IVM_2021_12_a2
L. Bian; S. Zhang; S. Wang; K. Wang. Kaczmarz method for fuzzy linear systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2021), pp. 23-30. http://geodesic.mathdoc.fr/item/IVM_2021_12_a2/

[1] Friedman M., Ming M., Kandel A., “Fuzzy linear systems”, Fuzzy Sets and Systems, 96 (1998), 201–209 | DOI | Zbl

[2] Demenkov N. P., Mikrin E. A., “Identification of linear models by fuzzy basis functions”, IFAC PapersOnLine, 51–32 (2018), 574–579 | DOI

[3] Demenkov N. P., Mikrin E. A., “Methods of solving fuzzy systems of linear equations. P. 1. Complete Systems”, Control Sci., 4 (2019), 3–14

[4] Demenkov N. P., Mikrin E. A., “Methods of solving fuzzy systems of linear equations. P. 2. Incomplete Systems”, Control Sci., 5 (2019), 9–28

[5] Abbasbandy S., Ezzati R., Jafarian A., “LU decomposition method for solving fuzzy system of linear equations”, Appl. Math. Comput., 172 (2006), 633–643 | Zbl

[6] Abbasbandy S., Jafarian A., “Steepest descent method for system of fuzzy linear equations”, Appl. Math. Comput., 175 (2006), 823–833 | Zbl

[7] Abbasbandy S., Jafarian A., Ezzati R., “Conjugate gradient method for fuzzy symmetric positive definite system of linear equations”, Appl. Math. Comput., 171 (2005), 1184–1191 | Zbl

[8] Akram M., Allahviranloo T., Pedrycz W., Ali M., “Methods for solving LR-bipolar fuzzy linear systems”, Soft Comput., 25 (2021), 85–108 | DOI

[9] Allahviranloo T., “Numerical methods for fuzzy system of linear equations”, Appl. Math. Comput., 155 (2004), 493–502 | Zbl

[10] Allahviranloo T., “Successive over relaxation iterative method for fuzzy system of linear equations”, Appl. Math. Comput., 162 (2005), 189–196 | Zbl

[11] Allahviranloo T., “The Adomian decomposition method for fuzzy system of linear equations”, Appl. Math. Comput., 163 (2005), 553–563 | Zbl

[12] Dehghan M., Hashemi B., “Iterative solution of fuzzy linear systems”, Appl. Math. Comput., 175 (2006), 645–674 | Zbl

[13] Ezzati R., “Solving fuzzy linear systems”, Soft Comput., 15 (2011), 193–197 | DOI | Zbl

[14] Fariborzi Araghi M. A., Fallahzadeh A., “Inherited LU factorization for solving fuzzy system of linear equations”, Soft Comput., 17 (2013), 159–163 | DOI | Zbl

[15] Koam A. N.A., Akram M., Muhammad G., Hussain N., “LU Decomposition Scheme for Solving $m$-Polar Fuzzy System of Linear Equations”, Math. Probl. Eng., 2020 (2020), 8384593 | Zbl

[16] Li J., Li W., Kong X., “A new algorithm model for solving fuzzy linear systems”, Southeast Asian Bull. Math., 34 (2010), 121–132

[17] Miao S.-X., Zheng B., Wang K., “Block SOR methods for fuzzy linear systems”, J. Appl. Math. Comput., 26 (2008), 201–218 | DOI | Zbl

[18] Nasseri S. H., Matinfar M., Sohrabi M., “QR-decomposition method for solving fuzzy system of linear equations”, Int. J. Math. Comput., 4 (2009), 129–136

[19] Wang K., Wu Y., “Uzawa-SOR method for fuzzy linear system”, International J. Inform. and Comput. Sci., 1 (2012), 36–39

[20] Wang K., Zheng B., “Symmetric successive overrelaxation methods for fuzzy linear systems”, Appl. Math. Comput., 175 (2006), 891–901 | Zbl

[21] Wang K., Zheng B., “Block iterative methods for fuzzy linear systems”, J. Appl. Math. Comput., 25 (2007), 119–136 | DOI | Zbl

[22] Yin J.-F., Wang K., “Splitting iterative methods for fuzzy system of linear equations”, Comput. Math. Model., 20 (2009), 326–335 | DOI | Zbl

[23] Zhang J.-J., “A new greedy Kaczmarz algorithm for the solution of very large linear systems”, Appl. Math. Lett., 91 (2019), 207–212 | DOI | Zbl

[24] Bai Z.-Z., W.-T. Wu, “On relaxed greedy randomized Kaczmarz methods for solving large sparse linear systems”, Appl. Math. Lett., 83 (2018), 21–26 | DOI | Zbl

[25] Liu Y., Gu C.-Q., “Variant of greedy randomized Kaczmarz for ridge regression”, Appl. Numer. Math., 143 (2019), 223–246 | DOI | Zbl

[26] Niu Y.-Q., Zheng B., “A greedy block Kaczmarz algorithm for solving large-scale linear systems”, Appl. Math. Lett., 104 (2020), 106294 | DOI | Zbl