A generalization of the Polia--Szego and Makai inequalities for torsional rigidity
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2021), pp. 86-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove generalizations of the classical inequalities of Polia — Szegо and Makai about torsional rigidity of convex domains. The main idea of the proof is to apply an exact isoperimetric inequality of for Euclidean moments of a domain. This inequality has a wide class of extremal regions and is of independent interest.
Keywords: torsional rigidity, Euclidean moments of the domain with respect to its boundary, isoperimetric inequalities, distance to the boundary of domain.
Mots-clés : convex domains
@article{IVM_2021_11_a7,
     author = {L. I. Gafiyatullina and R. G. Salakhudinov},
     title = {A generalization of the {Polia--Szego} and {Makai} inequalities for torsional rigidity},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {86--91},
     publisher = {mathdoc},
     number = {11},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_11_a7/}
}
TY  - JOUR
AU  - L. I. Gafiyatullina
AU  - R. G. Salakhudinov
TI  - A generalization of the Polia--Szego and Makai inequalities for torsional rigidity
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 86
EP  - 91
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_11_a7/
LA  - ru
ID  - IVM_2021_11_a7
ER  - 
%0 Journal Article
%A L. I. Gafiyatullina
%A R. G. Salakhudinov
%T A generalization of the Polia--Szego and Makai inequalities for torsional rigidity
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 86-91
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_11_a7/
%G ru
%F IVM_2021_11_a7
L. I. Gafiyatullina; R. G. Salakhudinov. A generalization of the Polia--Szego and Makai inequalities for torsional rigidity. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2021), pp. 86-91. http://geodesic.mathdoc.fr/item/IVM_2021_11_a7/

[1] Polia G., Sege G., Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatgiz, M., 1962

[2] Timoshenko S. P., Istoriya nauki o soprotivlenii materialov, GIFML, M., 1957

[3] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970

[4] Payne L. E., “Some isoperimetric inequalities in the torsion problem for multiply connected regions”, Studies in Mathematical analisis and Related Topics, Essays in honor of G. Polya, Standford Univ. Press, Standford, California, 1962, 270–280

[5] de Saint-Venant,Ḃ., “Memoire sur la torsion des primes.”, Memories presentes par divers savants a l'Academie des Sci., 14 (1853)

[6] Avkhadiev F. G., “Geometricheskie kharakteristiki oblasti ekvivalentnye nekotorym normam operatorov vlozheniya”, Materialy mezhdunarodn. konf. «Chebyshevskie chteniya», 1996, 12–14

[7] Avkhadiev F. G., Konformnye otobrazheniya i kraevye zadachi, Kazansk. fond «Matematika», Kazan, 1996

[8] Avkhadiev F. G., “Reshenie obobschennoi zadachi Sen-Venana”, Matem. sb., 1998, 3–12 | Zbl

[9] Salahudinov R. G., “An isoperimetric inequality for torsional rigidity in the complex plane”, J. Inequal. and Appl., 6 (2001), 253–260

[10] Salakhudinov R. G., “Izoperimetricheskie svoistva evklidovykh granichnykh momentov odnosvyaznoi oblasti”, Izv. vuzov. Matem., 2013, no. 8, 66–79 | Zbl

[11] Salahudinov R. G., “Torsional rigidity and euclidian moments of a convex domain”, The Quarterly J. of Math., 67 (2016), 669–681

[12] Makai. E., On the Principal Frequency of a Membrane and the Torsional Regidity of a Beam, Stanford Univ. Press, 1962, 227–231