On the generalized absolute Ces\`aro summability methods
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2021), pp. 34-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a theorem on ${\mid{C},\alpha\mid}_k$ summability of an infinite series is generalized for the $\varphi-{\mid{C},\alpha; \delta\mid}_k$ summability method. Also, a known result dealing with ${\mid{C},1\mid}_k$ summability is given.
Keywords: almost increasing sequences, Cesàro mean, Hölder's inequality, Minkowski's inequality, summability factors.
@article{IVM_2021_11_a3,
     author = {H. S. \"Ozarslan},
     title = {On the generalized absolute {Ces\`aro} summability methods},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {34--39},
     publisher = {mathdoc},
     number = {11},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2021_11_a3/}
}
TY  - JOUR
AU  - H. S. Özarslan
TI  - On the generalized absolute Ces\`aro summability methods
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2021
SP  - 34
EP  - 39
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2021_11_a3/
LA  - ru
ID  - IVM_2021_11_a3
ER  - 
%0 Journal Article
%A H. S. Özarslan
%T On the generalized absolute Ces\`aro summability methods
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2021
%P 34-39
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2021_11_a3/
%G ru
%F IVM_2021_11_a3
H. S. Özarslan. On the generalized absolute Ces\`aro summability methods. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2021), pp. 34-39. http://geodesic.mathdoc.fr/item/IVM_2021_11_a3/

[1] Bari N. K., Stečkin S. B., “Best approximations and differential proprerties of two conjugate functions”, Trudy Moskov. Math. Obšč., 5, 1956, 483–522 (in Russian) | Zbl

[2] Cesàro E., “Sur la multiplication des séries”, Bull. Sci. Math., 14 (1890), 114–120

[3] Seyhan H., “On the generalized Cesàro summability factors”, Acta Comment. Univ. Tartu. Math., 3 (1999), 3–6 | Zbl

[4] Flett T. M., “On an extension of absolute summability and some theorems of Littlewood and Paley”, Proc. London Math. Soc., 7:3 (1957), 113–141 | DOI | Zbl

[5] Bor H., “On the absolute Cesàro summability factors”, Anal. Numér. Théor. Approx., 20:1–2 (1991), 11–14 | Zbl

[6] Bor H., “Quasimonotone and almost increasing sequences and their new applications”, Abstr. Appl. Anal., 2012, 793548 | Zbl

[7] Bor H., Özarslan H. S., “A note on absolute summability factors”, Adv. Stud. Contemp. Math., 6:1 (2003), 1–11

[8] Bor H., Seyhan H., “A note on almost increasing sequences”, Comment. Math. Prace Math., 39 (1999), 37–42 | Zbl

[9] Bor H., Srivastava H. M., “Almost increasing sequences and their applications”, Int. J. Pure Appl. Math., 3:1 (2002), 29–35 | Zbl

[10] Özarslan H. S., “On the generalized Cesàro summability factors”, Acta Math. Acad. Paedagog. Nyházi, 17:1 (2001), 3–7 | Zbl

[11] Özarslan H. S., “Factors for the $\varphi-\left|C,\alpha \right|_{k}$ summability”, Adv. Stud. Contemp. Math., 5:1 (2002), 25–31 | Zbl

[12] Özarslan H. S., “A note on absolute summability factors”, Proc. Indian Acad. Sci. Math. Sci., 113:2 (2003), 165–169 | DOI | Zbl

[13] Özarslan H. S., “Absolute Cesàro summability factors”, J. Concr. Appl. Math., 5:3 (2007), 231–236 | Zbl

[14] Özarslan, H.S., “On absolute Cesàro summability factors of infinite series”, Commun. Math. Anal., 3:1 (2007), 53–56 | Zbl

[15] Özarslan H. S., “A note on generalized absolute Cesàro summability”, J. Comp. Anal. Appl., 12:3 (2010), 581–585 | Zbl

[16] Özarslan H. S., “A note on generalized absolute Cesàro summability”, Adv. Pure Appl. Math., 5:1 (2014), 1–3 | DOI | Zbl

[17] Seyhan H., “A note on summability methods”, Math. Slovaca, 49:2 (1999), 201–208 | Zbl

[18] Sonker S., Munjal A., “Absolute $\varphi-{\mid{C,\alpha, \beta; \delta}\mid}_k$ summability of infinite series”, J. Inequal. Appl., 168 (2017) | DOI | Zbl

[19] Bor H., “Almost increasing sequences and their new applications”, J. Inequal. Appl., 207 (2013) | DOI

[20] Pati T., “The summability factors of infinite series”, Duke Math. J., 21 (1954), 271–283 | DOI | Zbl

[21] Bosanquet L. S., “A mean value theorem”, J. London Math. Soc., 16 (1941), 146–148 | DOI

[22] Mazhar S. M., “Absolute summability factors of infinite series”, Kyungpook Math. J., 39:1 (1999), 67–73 | Zbl

[23] Sulaiman W. T., “On a new application of almost increasing sequences”, Bull. Math. Anal. Appl., 4:3 (2012), 29–33 | Zbl