Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2021_10_a5, author = {A. Khatamov and E. A. Norkulov}, title = {Exact estimates of the best rational approximations of functions with derivative of generalized finite variation}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {71--77}, publisher = {mathdoc}, number = {10}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2021_10_a5/} }
TY - JOUR AU - A. Khatamov AU - E. A. Norkulov TI - Exact estimates of the best rational approximations of functions with derivative of generalized finite variation JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2021 SP - 71 EP - 77 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2021_10_a5/ LA - ru ID - IVM_2021_10_a5 ER -
%0 Journal Article %A A. Khatamov %A E. A. Norkulov %T Exact estimates of the best rational approximations of functions with derivative of generalized finite variation %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2021 %P 71-77 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2021_10_a5/ %G ru %F IVM_2021_10_a5
A. Khatamov; E. A. Norkulov. Exact estimates of the best rational approximations of functions with derivative of generalized finite variation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2021), pp. 71-77. http://geodesic.mathdoc.fr/item/IVM_2021_10_a5/
[1] Khatamov A., Norqulov E. A., “On estimates of the best approximations of functions with derivative of generalized finite variation by rational ones”, Reports of the Acad. Sci. Uzb., 2014, no. 2, 5–6
[2] Khatamov A., “On estimates of the best approximations of functions with derivative of generalized finite variation by polynomial splines”, Uzb. Math. J., 2015, no. 3, 164–173
[3] Zagirov N. Sh., “O priblizhenii funktsii obobschennoi konechnoi variatsii posredstvom ratsionalnykh funktsii”, Matem. zametki, 32:5 (1982), 657–668
[4] Musielac J., Orlich W., “On generalized variation $(1)$”, Studia Math., 18 (1959), 11–41 | DOI
[5] Popov V. A., “On the connection between rational and spline approximation”, C. R. Acad. Bulg. Sci., 27:5 (1975), 623–626
[6] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960
[7] Petrushev P. P., “Relations between rational and spline approximations of functions and rational and spline approximations of their derivatives look at book of Petrushev P. P., Popov V. A. Rational approximation of real functions”, Encyclopedia Math. and appl., 28, Cambridge Univ. Press, Cambridge–New-York–New Rochelle–Melbourne–Sydney, 1987, 244–257