Specificity of Petrov classification of (anti-)self-dual zero signature metrics
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2020), pp. 56-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

A.Z. Petrov divided 4-metrics of the zero signature into 6 types, which later began to be denoted I, D, O, II, N, III. However, in the case of (anti)-self-duality, the $\lambda$-matrix, on the basis of which Petrov built his classification, acquires specificity. First, the determinant of this $\lambda$-matrix has a root 0 of multiplicity at least 3. Secondly, the multiplicity of this root cannot be 5. These two circumstances lead to the fact that there are not 6, but 7 different types of metrics. A new type I$_{0}$ appears, whose characteristic number 0 has multiplicity 4. This type does not coincide with I, since for type I the multiplicity of the root 0 is three. Examples of metrics, expressed in terms of elementary functions, of all seven types are constructed.
Keywords: (anti)-self-duality, Petrov classification, Weyl tensor, Hodge operator.
@article{IVM_2020_9_a4,
     author = {L. N. Krivonosov and V. A. Luk"yanov},
     title = {Specificity of {Petrov} classification of (anti-)self-dual zero signature metrics},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {56--67},
     publisher = {mathdoc},
     number = {9},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_9_a4/}
}
TY  - JOUR
AU  - L. N. Krivonosov
AU  - V. A. Luk"yanov
TI  - Specificity of Petrov classification of (anti-)self-dual zero signature metrics
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 56
EP  - 67
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_9_a4/
LA  - ru
ID  - IVM_2020_9_a4
ER  - 
%0 Journal Article
%A L. N. Krivonosov
%A V. A. Luk"yanov
%T Specificity of Petrov classification of (anti-)self-dual zero signature metrics
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 56-67
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_9_a4/
%G ru
%F IVM_2020_9_a4
L. N. Krivonosov; V. A. Luk"yanov. Specificity of Petrov classification of (anti-)self-dual zero signature metrics. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2020), pp. 56-67. http://geodesic.mathdoc.fr/item/IVM_2020_9_a4/

[1] Atiyah M. F., Hitchin N. J., Singer I. M., “Self-duality in four-dimensional Riemannian geometry”, Proc. Roy. Soc. London Ser. A, 362 (1978), 425–461 | MR | Zbl

[2] Krivonosov L. N., Lukyanov V. A., “Osnovnaya teorema dlya (anti)avtodualnoi konformnoi svyaznosti bez krucheniya na chetyrekhmernom mnogoobrazii”, Izv. vuzov. Matem., 2 (2019), 29–38 | MR | Zbl

[3] Sucheta Koshti, Naresh Dadhich, The General Self-dual solution of the Einstein Equations, 1994, arXiv: gr-qc/9409046

[4] Krivonosov L. N., Lukyanov V. A., “Uravneniya dualnosti na 4-mnogoobrazii konformnoi svyaznosti bez krucheniya i nekotorye ikh resheniya dlya nulevoi signatury”, Vestn. Samarsk. gos. tekhn. un-ta. Ser. Fiz.-matem. nauki, 23:2 (2019), 207–228 | MR | Zbl

[5] Petrov A. Z., Prostranstva Einshteina, Gos. izd-vo fiz.-matem. lit-ry, M., 1961 | MR

[6] Dunajski M., Ferapontov E., Kruglikov B., On the Einstein-Weyl and conformal self-duality equations, 2014, arXiv: 1406.0018 | MR

[7] Bogdanov L. V., Dryuma V. S., Manakov S. V., “Dunajski generalization of the second heavenly equation: dressing method and the hierarchy”, J. Phys. A: Math. Theor., 40 (2007), 14383–14393 | DOI | MR | Zbl

[8] Bogdanov L. V., 'Interpolating' differential reductions of multidimensional integrable hierarchies, 2010, arXiv: 1011.0631 | MR

[9] Yi G., Santini P. M., “The Inverse Spectral Transform for the Dunajski hierarchy and some of its reductions, I: Cauchy problem and longtime behavior of solutions”, J. Phys. A: Math. Theor., 48 (2015) | MR | Zbl

[10] Russian Math. Sur., 48:1 (1993), 1–35 | DOI | MR | Zbl