Specificity of Petrov classification of (anti-)self-dual zero signature metrics
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2020), pp. 56-67
Voir la notice de l'article provenant de la source Math-Net.Ru
A.Z. Petrov divided 4-metrics of the zero signature into 6 types, which later began to be denoted I, D, O, II, N, III. However, in the case of (anti)-self-duality, the $\lambda$-matrix, on the basis of which Petrov built his classification, acquires specificity. First, the determinant of this $\lambda$-matrix has a root 0 of multiplicity at least 3. Secondly, the multiplicity of this root cannot be 5. These two circumstances lead to the fact that there are not 6, but 7 different types of metrics. A new type I$_{0}$ appears, whose characteristic number 0 has multiplicity 4. This type does not coincide with I, since for type I the multiplicity of the root 0 is three. Examples of metrics, expressed in terms of elementary functions, of all seven types are constructed.
Keywords:
(anti)-self-duality, Petrov classification, Weyl tensor, Hodge operator.
@article{IVM_2020_9_a4,
author = {L. N. Krivonosov and V. A. Luk"yanov},
title = {Specificity of {Petrov} classification of (anti-)self-dual zero signature metrics},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {56--67},
publisher = {mathdoc},
number = {9},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2020_9_a4/}
}
TY - JOUR AU - L. N. Krivonosov AU - V. A. Luk"yanov TI - Specificity of Petrov classification of (anti-)self-dual zero signature metrics JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2020 SP - 56 EP - 67 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2020_9_a4/ LA - ru ID - IVM_2020_9_a4 ER -
L. N. Krivonosov; V. A. Luk"yanov. Specificity of Petrov classification of (anti-)self-dual zero signature metrics. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2020), pp. 56-67. http://geodesic.mathdoc.fr/item/IVM_2020_9_a4/