Stabilization for solutions of plate equation with time-varying delay and weak-viscoelasticity in $\mathbb{R}^n$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2020), pp. 25-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a dynamical system with delay described by a differential equation with partial derivatives of hyperbolic type and delay with respect to a time variable. We establish in Theorem 3.1 the $k(t)$-stability of weak solution under suitable initial conditions in $\mathbb{R}^n, n>4$ by introducing an appropriate Lyapunov functions.
Keywords: plate equation, weak-viscoelastic, variable delay, energy decay, weighted space, density.
@article{IVM_2020_9_a2,
     author = {Kh. Zennir},
     title = {Stabilization for solutions of plate equation with time-varying delay and weak-viscoelasticity in $\mathbb{R}^n$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {25--38},
     publisher = {mathdoc},
     number = {9},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_9_a2/}
}
TY  - JOUR
AU  - Kh. Zennir
TI  - Stabilization for solutions of plate equation with time-varying delay and weak-viscoelasticity in $\mathbb{R}^n$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 25
EP  - 38
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_9_a2/
LA  - ru
ID  - IVM_2020_9_a2
ER  - 
%0 Journal Article
%A Kh. Zennir
%T Stabilization for solutions of plate equation with time-varying delay and weak-viscoelasticity in $\mathbb{R}^n$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 25-38
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_9_a2/
%G ru
%F IVM_2020_9_a2
Kh. Zennir. Stabilization for solutions of plate equation with time-varying delay and weak-viscoelasticity in $\mathbb{R}^n$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2020), pp. 25-38. http://geodesic.mathdoc.fr/item/IVM_2020_9_a2/

[1] Alabau-Boussouira F., Nicaise S., Pignotti C., “Exponential stability of the wave equation with memory and time delay”, New prospects in direct, Inverse Cont. Prob. Evol. Equat., 10, 2014, 1–22 | MR | Zbl

[2] Dai Q., Yang Z., “Global existence and exponential decay of the solution for a viscoelastic wave equation with a delay”, Z. Angew. Math. Phys., 65 (2014), 885–903 | DOI | MR | Zbl

[3] Datko R., Lagnese J., Polis M. P., “An example on the effect of time delays in boundary feedback stabilization of wave equations”, SIAM J. Control Optim., 24 (1986), 152–156 | DOI | MR | Zbl

[4] Kafini M., Messaoudi S. A., Nicaise S., “A blow-up result in a nonlinear abstract evolution system with delay”, Nonl. Diff. Equat. Appl., 23:13 (2016) | DOI | MR | Zbl

[5] Liu W. J., “General decay of the solution for viscoelastic wave equation with a time-varying delay term in the internal feedback”, J. Math. Phys., 54 (2013), 043504 | DOI | MR | Zbl

[6] Liu W. J., “General decay rate estimate for the energy of a weak viscoelastic equation with an internal time-varying delay term”, Taiwanese J. Math., 17 (2013), 2101–2115 | MR | Zbl

[7] Liu G., Zhang H., “Well-posedness for a class of wave equation with past history and a delay”, Z. Angew. Math. Phys., 67:6 (2016) | DOI | MR

[8] Nicaise S., Pignotti C., “Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks”, SIAM J. Control Optim., 45 (2006), 1561–1585 | DOI | MR | Zbl

[9] Nicaise S., Pignotti C., “Intetior feedback stabilization of wave equations with time dependent delay”, Electron. J. Diff. Equat., 2011:41 (2011), 1–20 | MR

[10] Nicaise S., Valein J., Fridman E., “Stabilization of the heat and the wave equations with boundary time-varying delays”, Discrete Conti. Dyna. Sys.-Ser. S, 2 (2009), 559–581 | MR | Zbl

[11] Wu S.T., “Asymptotic behavior for a viscoelastic wave equation with a delay term”, Taiwanese J. Math., 17 (2013), 765–784 | MR | Zbl

[12] Yang Z., “Existence and energy decay of solutions for the Euler-Bernoulli viscoelastic equation with a delay”, Z. Angew. Math. Phys., 66 (2015), 727–745 | DOI | MR | Zbl

[13] Zennir Kh., “General decay of solutions for damped wave equation of Kirchhoff type with density in $\mathbb{R}^{n}$”, Ann. Univ. Ferrara, 61 (2015), 381–394 | DOI | MR | Zbl

[14] Zitouni S., Zennir Kh., “On the existence and decay of solution for viscoelastic wave equation with nonlinear source in weighted spaces”, Rend. Circ. Mat. Palermo, II. Ser., 66:3 (2017), 337–353 | MR | Zbl

[15] Karachalios N. I., Stavrakakis N. M., “Existence of global attractor for semilinear dissipative wave equations on $\mathbb{R}^n$”, J. Diff. Equat., 157 (1999), 183–205 | DOI | MR | Zbl

[16] Beniani A., Benaissa A., Zennir Kh., “Polynomial Decay Of Solutions To The Cauchy Problem For A Petrowsky-Petrowsky System In $\mathbb{R}^{n}$”, J. Acta Appl. Math., 146 (2016), 67–79 | DOI | MR | Zbl

[17] Park S. H., “Decay rate estimates for a weak viscoelastic beam equation with time-varying delay”, Appl. Math. Lett., 31 (2014), 46–51 | DOI | MR | Zbl

[18] Feng B., “Global well-posedness and stability for a viscoelastic plate equation with a time delay”, Math. Probl. Eng., 2015, 585021 | MR | Zbl

[19] Benaissa A., Messaoudi S. A., “Global existence and energy decay of solutions for the wave equation with a time varying delay term in the weakly nonlinear internal feedbacks”, J. Math. Phys., 53 (2012), 123514 | DOI | MR | Zbl

[20] Feng B., “Well-posedness and exponential stability for a plate equation with time-varying delay and past history”, Z. Angew. Math. Phys., 68 (2017) | MR

[21] Benaissa A., Benguessoum A., Messaoudi S. A., “Global existence and energy decay of solutions to a viscoelastic wave equation with a delay term in the nonlinear internal feedback”, Int. J. Dyna. Sys. Diff. Equat., 5:1 (2014), 1–26 | MR | Zbl