Stabilization for solutions of plate equation with time-varying delay and weak-viscoelasticity in $\mathbb{R}^n$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2020), pp. 25-38

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a dynamical system with delay described by a differential equation with partial derivatives of hyperbolic type and delay with respect to a time variable. We establish in Theorem 3.1 the $k(t)$-stability of weak solution under suitable initial conditions in $\mathbb{R}^n, n>4$ by introducing an appropriate Lyapunov functions.
Keywords: plate equation, weak-viscoelastic, variable delay, energy decay, weighted space, density.
@article{IVM_2020_9_a2,
     author = {Kh. Zennir},
     title = {Stabilization for solutions of plate equation with time-varying delay and weak-viscoelasticity in $\mathbb{R}^n$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {25--38},
     publisher = {mathdoc},
     number = {9},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_9_a2/}
}
TY  - JOUR
AU  - Kh. Zennir
TI  - Stabilization for solutions of plate equation with time-varying delay and weak-viscoelasticity in $\mathbb{R}^n$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 25
EP  - 38
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_9_a2/
LA  - ru
ID  - IVM_2020_9_a2
ER  - 
%0 Journal Article
%A Kh. Zennir
%T Stabilization for solutions of plate equation with time-varying delay and weak-viscoelasticity in $\mathbb{R}^n$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 25-38
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_9_a2/
%G ru
%F IVM_2020_9_a2
Kh. Zennir. Stabilization for solutions of plate equation with time-varying delay and weak-viscoelasticity in $\mathbb{R}^n$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2020), pp. 25-38. http://geodesic.mathdoc.fr/item/IVM_2020_9_a2/