Diophantine equation generated by the maximal subfield of a circular field
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2020), pp. 45-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the fundamental basis of the field $L_9=\mathbb{Q} (2\cos(\pi/9))$, the form $N_{L_9}(\gamma)=f(x, y, z)$ is found and the Diophantine equation $f(x,y,z)=a$ is solved. A similar scheme is used to construct the form $N_{L_7}(\gamma)=g(x,y,z)$. The Diophantine equation $g (x, y, z)=a$ is solved.
Keywords: algebraic integer number, fundamental basis of an algebraic number field, norm of algebraic number, basic units of an algebraic field
Mots-clés : diophantine equation.
@article{IVM_2020_7_a4,
     author = {I. G. Galyautdinov and E. E. Lavrentyeva},
     title = {Diophantine equation generated by the maximal subfield of a circular field},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {45--55},
     publisher = {mathdoc},
     number = {7},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_7_a4/}
}
TY  - JOUR
AU  - I. G. Galyautdinov
AU  - E. E. Lavrentyeva
TI  - Diophantine equation generated by the maximal subfield of a circular field
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 45
EP  - 55
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_7_a4/
LA  - ru
ID  - IVM_2020_7_a4
ER  - 
%0 Journal Article
%A I. G. Galyautdinov
%A E. E. Lavrentyeva
%T Diophantine equation generated by the maximal subfield of a circular field
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 45-55
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_7_a4/
%G ru
%F IVM_2020_7_a4
I. G. Galyautdinov; E. E. Lavrentyeva. Diophantine equation generated by the maximal subfield of a circular field. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2020), pp. 45-55. http://geodesic.mathdoc.fr/item/IVM_2020_7_a4/

[1] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1985 | MR

[2] Edward J. Barbeau, Pell's Equation, Springer-Verlag, New York, 2003 | MR | Zbl

[3] Hambleton S. A., Williams H. C., Cubic Fields with Geometry, Springer International Publishing, 2018 | MR | Zbl

[4] Van der Varden, Algebra, Nauka, M., 1976 | MR

[5] Kostrikin A. I., Vvedenie v algebru, v. III, Fizmatlit, M., 2001

[6] Burbaki N., Mnogochleny i polya. Uporyadochennye gruppy, Nauka, M., 1965

[7] Prasolov V. V., Mnogochleny, MTsIMO, 2003

[8] Galyautdinov I. G., Lavrenteva E. E., “Mnogochleny, porozhdayuschie maksimalnye veschestvennye podpolya krugovykh polei”, Uchen. zap. Kazansk. un-ta., Ser. Fiz.-matem. nauki, 158:4 (2016), 469–481 | MR

[9] Alaca S., Williams K. S., Introductory algebraic number theory, Cambridge Univ. Press, 2004 | MR | Zbl

[10] Aierlend K., Rouzen M., Klassicheskoe vvedenie v sovremennuyu teoriyu chisel, Mir, M., 1987 | MR

[11] Marcus D. A., Number fields, Springer-Verlag, New York, 2018 | MR | Zbl

[12] Huard J. G., Spearman B. K., Williams K. S., “The primes for which an abelian cubic splits”, J. Math. Tokyo, 17 (1994) | DOI | MR | Zbl

[13] Galyautdinov I. G., Lavrentyeva E. E., “Normal basis of the maximal real subfield of a circular field”, Lobachevskii J. Math., 40:5 (2019), 630–639 | DOI | MR | Zbl