Existence of a solution to the Cauchy problem for the aggregation equation in hyperbolic space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2020), pp. 33-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

In hyperbolic space, we consider the Cauchy problem for the aggregation equation. Non-negative initial function limited and summable. The existence of a weak solution is proved on small time interval. In the case where the kernel of the integral operator is smooth and rapidly decreases at infinity, the existence of a bounded solution on an arbitrary interval of time is proved.
Keywords: the aggregation equation, hyperbolic space.
Mots-clés : solution existence
@article{IVM_2020_7_a3,
     author = {V. F. Vil'danova},
     title = {Existence of a solution to the {Cauchy} problem for the aggregation equation in  hyperbolic space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {33--44},
     publisher = {mathdoc},
     number = {7},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_7_a3/}
}
TY  - JOUR
AU  - V. F. Vil'danova
TI  - Existence of a solution to the Cauchy problem for the aggregation equation in  hyperbolic space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 33
EP  - 44
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_7_a3/
LA  - ru
ID  - IVM_2020_7_a3
ER  - 
%0 Journal Article
%A V. F. Vil'danova
%T Existence of a solution to the Cauchy problem for the aggregation equation in  hyperbolic space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 33-44
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_7_a3/
%G ru
%F IVM_2020_7_a3
V. F. Vil'danova. Existence of a solution to the Cauchy problem for the aggregation equation in  hyperbolic space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2020), pp. 33-44. http://geodesic.mathdoc.fr/item/IVM_2020_7_a3/

[1] Punzo F., “Well-posedness of the Cauchy problem for nonlinear parabolic equations with variable density in the hyperbolic space”, Nonlinear Diff. Equat. and Appl., 19 (2012), 485–501 | DOI | MR | Zbl

[2] Bertozzi A., Slepcev D., “Existence and Uniqueness of Solutions to an Aggregation Equation with Degenerate Diffusion”, Comm. Pur. Appl. Anal., 9:6 (2010), 1617–1637 | DOI | MR | Zbl

[3] Vildanova V. F., “Suschestvovanie i edinstvennost slabogo resheniya nelokalnogo uravneniya agregatsii s vyrozhdayuscheisya diffuziei obschego vida”, Matem. sb., 209:2 (2018), 66–81 | MR | Zbl

[4] Kamin Sh., Pozio M. A., Tesei A., “Admissible conditions for parabolic equations degenerating at infinity”, Algebra i analiz, 19:2 (2007), 105–121 | MR

[5] Carrillo J., Wittbold P., “Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems”, J. Diff. Equat., 156 (1999), 93–121 | DOI | MR | Zbl

[6] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR

[7] Vildanova V. F., Mukminov F. Kh., Sovr. probl. matem. Fundament. napravleniya, 63, no. 4, 2017, 557–572 | MR

[8] Vildanova V. F., “Suschestvovanie i edinstvennost slabogo resheniya integro-differentsialnogo uravneniya agregatsii na rimanovom mnogoobrazii”, Matem. sb., 211:2 (2020), 74–105 | MR | Zbl

[9] Mukminov F. Kh., “Edinstvennost renormalizovannogo resheniya elliptiko-parabolicheskoi zadachi v anizotropnykh prostranstvakh Soboleva-Orlicha”, Matem. sb., 208:8 (2017), 1187–1206 | MR | Zbl