Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2020_6_a9, author = {V. G. Zvyagin and V. P. Orlov and A. S. Arsentyev}, title = {Equivalence of weak solvability of initial-boundary value problems for the {Jeffreys--Oldroyd} and one integro-differential system with memory}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {79--85}, publisher = {mathdoc}, number = {6}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2020_6_a9/} }
TY - JOUR AU - V. G. Zvyagin AU - V. P. Orlov AU - A. S. Arsentyev TI - Equivalence of weak solvability of initial-boundary value problems for the Jeffreys--Oldroyd and one integro-differential system with memory JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2020 SP - 79 EP - 85 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2020_6_a9/ LA - ru ID - IVM_2020_6_a9 ER -
%0 Journal Article %A V. G. Zvyagin %A V. P. Orlov %A A. S. Arsentyev %T Equivalence of weak solvability of initial-boundary value problems for the Jeffreys--Oldroyd and one integro-differential system with memory %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2020 %P 79-85 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2020_6_a9/ %G ru %F IVM_2020_6_a9
V. G. Zvyagin; V. P. Orlov; A. S. Arsentyev. Equivalence of weak solvability of initial-boundary value problems for the Jeffreys--Oldroyd and one integro-differential system with memory. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2020), pp. 79-85. http://geodesic.mathdoc.fr/item/IVM_2020_6_a9/
[1] Vorotnikov D. A., Zvyagin V. G., “Obzor reultatov i otkrytykh problem po matematicheskim modelyam vyazkouprugikh sred tipa Dzheffrisa”, Vestn. VGU, 2009, no. 2, 30–50 | Zbl
[2] Temam R., Uravneniya Nave-Stoksa. Teoriya i chislennyi analiz, Mir, M., 1987
[3] Zvyagin V. G., Vorotnikov D. A., Topological Approximation Methods for Evolutionary Problems of Nonlinear Hydrodynamics, De Gruyter Series in Nonlinear Anal. and Appl., 12, Walter de Gruyter, Berlin–New York, 2008 | MR
[4] Zvyagin V. G., Orlov V. P., “Solvability of one non-Newtonian fluid dynamics model with memory”, Nonlinear Anal.: TMA, 172 (2018), 79–98 | MR
[5] Zvyagin A. V., Zvyagin V. G., Polyakov D. N., “O dissipativnoi razreshimosti alfa-modeli dvizheniya zhidkosti s pamyatyu”, Zhurn. vychisl. matem. i matem. fiz., 59:7 (2019), 1243–1257 | Zbl
[6] Orlov V. P., Sobolevskii P. E., “On mathematical models of a viscoelasticity with a memory”, Diff. Integral Equat., 4:1 (1991), 103–115 | MR | Zbl
[7] DiPerna R. J., Lions P. L., “Ordinary differential equations, transport theory and Sobolev spaces”, Invent. Math., 98 (1989), 511–547 | DOI | MR | Zbl
[8] Ambrosio L., “Transport equation and Cauchy problem for BV vector fields”, Invent. Math., 158 (2004), 227–260 | DOI | MR | Zbl
[9] Crippa G., de Lellis C., “Estimates and regularity results for the diPerna-Lions flow”, J. Reine Angew. Math., 6:6 (2008), 15–46 | MR
[10] Vorotnikov D. A., Zvyagin V. G., “O skhodimosti reshenii regulyarizovannoi zadachi dlya uravnenii dvizheniya vyazkoiuprugoi sredy Dzheffrisa k resheniyam iskhodnoi zadachi”, Fundament. i prikl. matem., 11:4 (2005), 49–63