Equivalence of weak solvability of initial-boundary value problems for the Jeffreys--Oldroyd and one integro-differential system with memory
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2020), pp. 79-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

The equivalence of weak solvability of initial boundary value problems for Jeffries–Oldroyd model and one integro-differential system with memory is established. The proofs sub-stantially use the properties of regular lagrangean flows.
Keywords: viscoelastic medium, the motion equation, initial-boundary-value problem, weak solution.
@article{IVM_2020_6_a9,
     author = {V. G. Zvyagin and V. P. Orlov and A. S. Arsentyev},
     title = {Equivalence of weak solvability of initial-boundary value problems for the {Jeffreys--Oldroyd} and one integro-differential system with memory},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {79--85},
     publisher = {mathdoc},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_6_a9/}
}
TY  - JOUR
AU  - V. G. Zvyagin
AU  - V. P. Orlov
AU  - A. S. Arsentyev
TI  - Equivalence of weak solvability of initial-boundary value problems for the Jeffreys--Oldroyd and one integro-differential system with memory
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 79
EP  - 85
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_6_a9/
LA  - ru
ID  - IVM_2020_6_a9
ER  - 
%0 Journal Article
%A V. G. Zvyagin
%A V. P. Orlov
%A A. S. Arsentyev
%T Equivalence of weak solvability of initial-boundary value problems for the Jeffreys--Oldroyd and one integro-differential system with memory
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 79-85
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_6_a9/
%G ru
%F IVM_2020_6_a9
V. G. Zvyagin; V. P. Orlov; A. S. Arsentyev. Equivalence of weak solvability of initial-boundary value problems for the Jeffreys--Oldroyd and one integro-differential system with memory. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2020), pp. 79-85. http://geodesic.mathdoc.fr/item/IVM_2020_6_a9/

[1] Vorotnikov D. A., Zvyagin V. G., “Obzor reultatov i otkrytykh problem po matematicheskim modelyam vyazkouprugikh sred tipa Dzheffrisa”, Vestn. VGU, 2009, no. 2, 30–50 | Zbl

[2] Temam R., Uravneniya Nave-Stoksa. Teoriya i chislennyi analiz, Mir, M., 1987

[3] Zvyagin V. G., Vorotnikov D. A., Topological Approximation Methods for Evolutionary Problems of Nonlinear Hydrodynamics, De Gruyter Series in Nonlinear Anal. and Appl., 12, Walter de Gruyter, Berlin–New York, 2008 | MR

[4] Zvyagin V. G., Orlov V. P., “Solvability of one non-Newtonian fluid dynamics model with memory”, Nonlinear Anal.: TMA, 172 (2018), 79–98 | MR

[5] Zvyagin A. V., Zvyagin V. G., Polyakov D. N., “O dissipativnoi razreshimosti alfa-modeli dvizheniya zhidkosti s pamyatyu”, Zhurn. vychisl. matem. i matem. fiz., 59:7 (2019), 1243–1257 | Zbl

[6] Orlov V. P., Sobolevskii P. E., “On mathematical models of a viscoelasticity with a memory”, Diff. Integral Equat., 4:1 (1991), 103–115 | MR | Zbl

[7] DiPerna R. J., Lions P. L., “Ordinary differential equations, transport theory and Sobolev spaces”, Invent. Math., 98 (1989), 511–547 | DOI | MR | Zbl

[8] Ambrosio L., “Transport equation and Cauchy problem for BV vector fields”, Invent. Math., 158 (2004), 227–260 | DOI | MR | Zbl

[9] Crippa G., de Lellis C., “Estimates and regularity results for the diPerna-Lions flow”, J. Reine Angew. Math., 6:6 (2008), 15–46 | MR

[10] Vorotnikov D. A., Zvyagin V. G., “O skhodimosti reshenii regulyarizovannoi zadachi dlya uravnenii dvizheniya vyazkoiuprugoi sredy Dzheffrisa k resheniyam iskhodnoi zadachi”, Fundament. i prikl. matem., 11:4 (2005), 49–63