On the Lyapunov type inequality
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2020), pp. 21-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

A.M. Lyapunov proved the inequality that makes it possible to estimate the distance between two consecutive zeros $ a $ and $ b $ of solutions of a linear differential equation of the second order $ x''(t) + q (t) x (t) = 0$ where $ q (t) $ is a continuous function for $ t \in [a, b] $. In the present note, a similar problem is solved for a linear differential equation of the form $ x'' (t) + p (t) x'(t) + q (t) x (t) = 0 $. The obtained inequality is applied to the periods estimate of periodic solutions of nonlinear differential Liénard and Van der Pol equations.
Keywords: Lyapunov–type inequality
Mots-clés : Liénard equation, van der Pol equation.
@article{IVM_2020_6_a3,
     author = {A. O. Ignatyev},
     title = {On the {Lyapunov} type inequality},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {21--29},
     publisher = {mathdoc},
     number = {6},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2020_6_a3/}
}
TY  - JOUR
AU  - A. O. Ignatyev
TI  - On the Lyapunov type inequality
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2020
SP  - 21
EP  - 29
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2020_6_a3/
LA  - ru
ID  - IVM_2020_6_a3
ER  - 
%0 Journal Article
%A A. O. Ignatyev
%T On the Lyapunov type inequality
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2020
%P 21-29
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2020_6_a3/
%G ru
%F IVM_2020_6_a3
A. O. Ignatyev. On the Lyapunov type inequality. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2020), pp. 21-29. http://geodesic.mathdoc.fr/item/IVM_2020_6_a3/

[1] Lyapunov A. M., “Stability of motion: general problem”, International J. Control, 55:3 (1992), 701–767 | DOI | MR

[2] Wintner A., “On the non-existence of conjugate points”, American J. Math., 73 (1951), 368–380 | MR | Zbl

[3] Yang Xiaojing, “On Liapunov-type inequality for certain higher-order differential equations”, Appl. Math. and Computation, 134:2–3 (2003), 307–317 | DOI | MR | Zbl

[4] Niculescu C. P., “A new look at the Lyapunov inequality”, Ann. Academy Romanian Sci. Ser. Math. and Appl., 3:1 (2011), 207–217 | MR | Zbl

[5] Cheng Sui-Sun, “A discrete analogue of the inequality of Lyapunov”, Hokkaido Math. J., 12 (1983), 105–112 | DOI | MR | Zbl

[6] Zafer A., “Discrete linear Hamiltonian systems: Lyapunov type inequalities, stability and disconjugacy criteria”, J. Math. Anal. and Appl., 396:2 (2012), 606–617 | DOI | MR | Zbl

[7] Agarwal R. P., Özbekler A., “Lyapunov type inequalities for second order forced mixed nonlinear impulsive differential equations”, Appl. Math. and Computation, 282 (2016), 216–225 | DOI | MR | Zbl

[8] Jlelia M., Kiraneb M., Sameta B., “Lyapunov-type inequalities for fractional partial differential equations”, Appl. Math. Letters, 66 (2017), 30–39 | DOI | MR

[9] Brown R. C., Hinton D. B., “Lyapunov inequalities and their applications”, Survey on Classical Inequalities. Math. and Its Appl., 517, Kluwer Academic, Dordrecht, 2000, 1–25 | MR | Zbl

[10] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970

[11] Komlenko Yu. V., “Usloviya razreshimosti nekotorykh kraevykh zadach dlya obyknovennogo lineinogo differentsialnogo uravneniya vtorogo poryadka”, DAN SSSR, 174:5 (1018), 1018–1020 | MR

[12] Liénard A., “Étude des oscillations entreténues”, Revue générale de l'électricité, 23 (1928), 901–912

[13] Liénard A., “Étude des oscillations entreténues”, Revue générale de l'électricité, 23 (1928), 946–954

[14] Levinson N., Smith O., “A general equation for relaxation oscillations”, Duke Math. J., 9:2 (1942), 382–403 | DOI | MR | Zbl

[15] B. van der Pol, “On relaxation-oscillations”, The London, Edinburgh and Dublin Phil. Magazine and J. Sci., 2 (1927), 978–992

[16] Andronov A. A., Vitt A. A., Khaikin S. E., Teoriya kolebanii, 2-e izd., GIFML, M., 1959

[17] Wiggins S., Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer, New York, 2003 | MR | Zbl

[18] B. van der Pol, J. van der Mark, “The heartbeat considered as a relaxation oscillation, and an electrical model of the heart”, The London, Edinburgh and Dublin Philosophical Magazine and J. Sci., 6 (1928), 763–775

[19] Fitzhugh F., “Impulses and physiological states in theoretical models of nerve membranes”, Biophysics J., 1 (1961), 445–466 | DOI

[20] Nagumo J., Arimoto S., Yoshizawa S., “An active pulse transmission line simulating nerve axon”, Proc. of the Institute of Radio Engineers, 50 (1962), 2061–2070

[21] Glass L., Theory of Heart, Springer, New York–Heidelberg–Berlin, 1990

[22] Salasnich L., “Instabilities, point attractors and limit cycles in an inflationary universe”, Modern Phys. Letters A, 10 (1995), 3119–3127 | DOI

[23] Edelstein-Keshet L., Mathematical Models in Biology, Random House, New York, 1988 | MR | Zbl

[24] Poland D., “Loci of limit cycles”, Phys. Review E, 49 (1994), 157–165 | DOI | MR

[25] Albarakati W. A., Lloyd N. G., Pearson J. M., “Transformation to Liénard form”, Electronic J. Diff. Equat., 76 (2000), 1–11

[26] Ignatev A. O., Kirichenko V. V., “O neobkhodimykh usloviyakh globalnoi asimptoticheskoi ustoichivosti polozheniya ravnovesiya uravneniya Lenara”, Matem. zametki, 93:1 (2013), 63–71 | Zbl

[27] Bowman T. T., “Periodic solutions of Lienard systems with symmetries”, Nonlinear Anal., 2:4 (1978), 457–464 | DOI | MR | Zbl

[28] Carletti T., Villari G., “A note on existence and uniqueness of limit cycles for Liénard systems”, J. Math. Anal. and Appl., 307:2 (2005), 763–773 | DOI | MR | Zbl

[29] Odani K., “Existence of exactly $N$ periodic solutions for Liénard systems”, Funkcialaj Ekvacioj, 39 (1996), 217–234 | MR | Zbl

[30] Ignatyev A. O., “The domain of existence of a limit cycle of Liénard system”, Lobachevskii J. Math., 38:2 (2017), 271–279 | DOI | MR | Zbl

[31] Filippov A. F., “Dostatochnoe uslovie suschestvovaniya ustoichivogo predelnogo tsikla dlya uravneniya vtorogo poryadka”, Matem. sb., 30:1 (1952), 171–180 | Zbl

[32] Neumann D. A., Sabbagh L., “Periodic solutions of Lienard systems”, J. Math. Anal. and Appl., 62:1 (1978), 148–156 | MR | Zbl

[33] Sugie J., Hara T., “Non-existence of periodic solutions of the Lienard system”, J. Math. Anal. and Appl., 159:1 (1991), 224–236 | DOI | MR | Zbl

[34] Sabatini M., “On the period function of Lienard systems”, J. Diff. Equat., 152 (1999), 467–487 | DOI | MR | Zbl

[35] Ignatev A. O., “Otsenka amplitudy predelnogo tsikla uravneniya Lenara”, Differents. uravneniya, 53:3 (2017), 312–320 | Zbl

[36] Smirnov A. D., “Lektsii po modelyam makroekonomiki”, Ekonom. zhurn. VShE, 2000, no. 1, 87–122

[37] Meiss J. D., Differential dynamical systems, Soc. Industrial and Appl. Math., Philadelphia, 2007 | MR | Zbl

[38] Odani K., “The limit cycle of the van der Pol equation is not algebraic”, J. Diff. Equat., 115:1 (1995), 146–152 | MR | Zbl

[39] Dorodnitsyn A. A., “Asimptoticheskoe reshenie uravneniya Van-der-Polya”, Prikl. matem. i mekhan., 11:3 (1947), 313–328 | Zbl

[40] Sudakov V. F., “K voprosu o predelnom tsikle generatora Van der Polya v relaksatsionnom rezhime”, Vestn. MGTU im. N.E.Baumana. Ser. Priborostroenie, 2013, no. 1, 51–57

[41] Buonomo A., “The periodic solution of van der Pol's equation”, SIAM J. Appl. Math., 59:1 (1999), 156–171 | DOI | MR | Zbl

[42] Greenspan D., “Numerical approximation of periodic solutions of van der Pol's equation”, J. Math. Anal. Appl., 39 (1972), 574–579 | DOI | MR | Zbl

[43] Akulenko L. D., Korovina L. I., Kumakshev S. A., Nesterov S. V., “Avtokolebaniya ostsillyatorov Releya i Van der Polya pri umerenno bolshikh koeffitsientakh obratnoi svyazi”, Prikl. matem. i mekhan., 68:2 (2004), 273–281 | MR | Zbl