Successive in rank $(n+1,2)$ embedding of dimetric phenomenologically symmetric geometries of two sets
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2020), pp. 9-14
Voir la notice de l'article provenant de la source Math-Net.Ru
Is known complete classification of dimetric phenomenologically symmetrical geometries of two sets of rank $(n+1, 2)$, where $n=1,2, \ldots{}$ . From that classification it can be seen that some geometries of higher rank include in it geometries of previous rank. Such embedding can be proved (or disproved) by solving corresponding functional equation in which fact of embedding of geometries is expressed on language of metric functions that define them.
Keywords:
geometry of two sets, metric function, phenomenological symmetry, embedding of geometries, functional equation.
@article{IVM_2020_6_a1,
author = {R. A. Bogdanova and G. G. Mikhailichenko and R. M. Muradov},
title = {Successive in rank $(n+1,2)$ embedding of dimetric phenomenologically symmetric geometries of two sets},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {9--14},
publisher = {mathdoc},
number = {6},
year = {2020},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2020_6_a1/}
}
TY - JOUR AU - R. A. Bogdanova AU - G. G. Mikhailichenko AU - R. M. Muradov TI - Successive in rank $(n+1,2)$ embedding of dimetric phenomenologically symmetric geometries of two sets JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2020 SP - 9 EP - 14 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2020_6_a1/ LA - ru ID - IVM_2020_6_a1 ER -
%0 Journal Article %A R. A. Bogdanova %A G. G. Mikhailichenko %A R. M. Muradov %T Successive in rank $(n+1,2)$ embedding of dimetric phenomenologically symmetric geometries of two sets %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2020 %P 9-14 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2020_6_a1/ %G ru %F IVM_2020_6_a1
R. A. Bogdanova; G. G. Mikhailichenko; R. M. Muradov. Successive in rank $(n+1,2)$ embedding of dimetric phenomenologically symmetric geometries of two sets. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2020), pp. 9-14. http://geodesic.mathdoc.fr/item/IVM_2020_6_a1/