Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2020_6_a1, author = {R. A. Bogdanova and G. G. Mikhailichenko and R. M. Muradov}, title = {Successive in rank $(n+1,2)$ embedding of dimetric phenomenologically symmetric geometries of two sets}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {9--14}, publisher = {mathdoc}, number = {6}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2020_6_a1/} }
TY - JOUR AU - R. A. Bogdanova AU - G. G. Mikhailichenko AU - R. M. Muradov TI - Successive in rank $(n+1,2)$ embedding of dimetric phenomenologically symmetric geometries of two sets JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2020 SP - 9 EP - 14 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2020_6_a1/ LA - ru ID - IVM_2020_6_a1 ER -
%0 Journal Article %A R. A. Bogdanova %A G. G. Mikhailichenko %A R. M. Muradov %T Successive in rank $(n+1,2)$ embedding of dimetric phenomenologically symmetric geometries of two sets %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2020 %P 9-14 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2020_6_a1/ %G ru %F IVM_2020_6_a1
R. A. Bogdanova; G. G. Mikhailichenko; R. M. Muradov. Successive in rank $(n+1,2)$ embedding of dimetric phenomenologically symmetric geometries of two sets. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2020), pp. 9-14. http://geodesic.mathdoc.fr/item/IVM_2020_6_a1/
[1] Mikhailichenko G. G., “Dvumetricheskie fizicheskie struktury ranga $(n+1, 2)$”, Sib. matem. zhurn., 34:3 (1993), 132–143 | MR | Zbl
[2] Mikhailichenko G. G., Gruppovaya simmetriya fizicheskikh struktur, BGPU, Barnaul; GAGU, Gorno-Altaisk, 2003
[3] Kyrov V. A., Mikhailichenko G. G., “K voprosu o vlozhenii DFS GDM ranga $(2,2)$ v DFS GDM ranga $(3,2)$”, Mater. mezhdunar. konf. "Lomonosovskie chteniya na Altae" (14–17 noyabrya 2017), 299–304
[4] Kyrov V. A., “O vlozhenii dvumetricheskikh fenomenologicheski simetrichnykh geometrii”, Vestn. Tomsk. gos. un-ta. Matem. i mekhan., 2018, no. 56, 5–16 | DOI | MR